

CcH2 - CRYO-COMPRESSED HYDROGEN GAS

GASEOUS HYDROGEN LAND VEHICLE REFUELLING CONNECTION DEVICES WHITE PAPER PROCESS

Status: December 1, 2021

Release: 1.2

Author: Daniel Duschek, Bernhard Reiter, Umberto Cardella

White Paper Process - List of involved parties

AC Tech GmbH,	Air Liquide GmbH,	
Freiberg, Germany	Düsseldorf, Germany	
BIN Boysen GmbH & CO KG,	BP Europa SE;	
Nagold, Germany	Hamburg, Germany	
Brugg Group AG	Chart Industries,	
Brugg, Swiss	Ball Ground, USA	
Cellcentric GmbH & Co KG,	ContTech AG,	
Kirchheim unter Teck, Germany	Hannover, Germany	
Cooper Standard,	Cryomotive GmbH,	
Mannheim, Germany	Grasbrunn, Germany	
Cryotherm GmbH & Co KG	Daimler Truck AG,	
Kirchen/Sieg, Germany	Stuttgart, Germany	
Elaflex GmbH & Co KG,	Faurecia Automotive GmbH,	
Hamburg, Germany	Stadthagen, Gemany	
Goetze KG Armaturen,	Hyundai Motor Europe GmbH,	
Ludwigsburg, Germany	Ruesselsheim, Germany	
Ludwig-Bölkow-Systemtechnik GmbH,	Lifteh2,	
München, Germany	Hamburg, Germany	
Linde GmbH,	Magna International Europe GmbH,	
Pullach, Germany	Wien, Austria	
MAN Nutzfahrzeuge AG,	M-Tech GmbH	
München, Germany	Forchtenberg, Germany	
RegO GmbH	RTE GmbH & Co KG,	
Gladenbach, Germany	Grabenstätt, Germany	
SAG,	Shell Global Solutions International B.V.,	
Lend, Austria	GK Rijswijk, The Netherlands	
Stöhr Armaturen GmbH & Co KG,	Trelleborg AB,	
Königsbrunn, Germany	Trelleborg, Sweden	
Toyota Motor Europe,	Unitrove Limited,	
Brüssel, Belgium	Shepshed Leicestershire, United Kingdom	
Vitesco Technologies Germany GmbH,	Volvo Group Trucks Central Europe GmbH,	
Berlin, Germany	Ismaning, Germany	
Walther Präzision – Carl Kurt Walther GmbH & Co	WEH GmbH,	
KG,	Illertsen, Germany	
Haan, Germany		

The following document based on the ISO 17268.

The informations and details of this document (incl. content) are publicated under following link:

ISO 17268:2020(en), Gaseous hydrogen land vehicle refuelling connection devices

Further, the necessary amendments for a CcH_2 storage system are described, regarding to the deviation from the standard ISO 17268 document.

CONTENT

WHITE PAPER PROCESS CcH ₂ 1
DEFINITION OF CRYOGAS STORAGE SYSTEM PRESSURE LEVEL (40 MPA)

CONTENT ISO 17268:2020(E)

FORWARD

- 1 SCOPE
- 2 NORMATIVE REFERENCES
- 3 TERMS AND DEFINITIONS
- 4 GENERAL CONSTRUCTION REQUIREMENTS
- 5 NOZZLES
- 6 RECEPTACLES
- 7 DESIGN VERIFICATION TEST PROCEDURES
- 8 INSTRUCTIONS
- 9 MARKING

White Paper Process CcH₂

Description of the amendments required to ISO 17268. The main changes compared to the current edition are as follows:

3.9 maximum operating pressure MOP

highest CGH₂ pressure that is expected for a component or system during normal operation and highest CcH₂ operating pressure (blow-off pressure).

3.10 nominal working pressure NWP

CGH₂: pressure of a full vehicle compressed hydrogen storage system at a gas temperature of 15 °C. CcH₂: pressure of a full vehicle cryocompressed hydrogen storage system at a gas temperature of 243 °C to 65 °C.

- 4.5 Nozzles and receptacles shall be manufactured of materials suitable and compatible for use with compressed and cryo-compressed hydrogen at the pressure and the temperature ranges to which they will be subjected as specified in 3.2, 5.8 and 6.9. Materials used in the construction of nozzles, receptacles and protective caps shall be non-sparking or spark-reducing. All pressure bearing and wetted components shall also be made from material that is compatible with deionised water. Non-metallic material compatibility shall be documented by the component manufacturer or an independent third party.
- 4.9 CGH₂: Communications hardware which is supplied by the manufacturer and permanently integrated into the nozzle shall be attached to the nozzle and subjected to all of the nozzle tests. The communications hardware shall operate correctly upon completion of the all type and quality testing.

CcH₂: As a design criterion, communication devices in the nozzle is not required.

5.1 CGH₂: Nozzles shall couple with receptacles of equal or higher nominal working pressures and they shall be designed so that they will not couple with receptacles of lower nominal working pressures. The nozzle shall extend to within 1 mm of the stop ring for all nominal working pressures. Nozzles shall be designed so that they will not couple with gaseous fuelled vehicles other than GHLV.

CcH₂: Nozzles shall couple with receptacles of equal or higher nominal working pressures and they shall be designed so that they will not couple with receptacles of lower nominal working pressures. The nozzle shall extend to within 1 mm of the stop ring for all nominal working pressures. Nozzles shall be designed so that they will not couple with non-cryogenic GHLV.

5.6 CGH₂: The H11 and H25 nozzles shall fit within the envelope described in ISO 15501-1. All other nozzles shall fit within the envelope specified in Annex A.

CcH₂: under investigation.

- 5.8 CGH₂: The nozzle shall be designed to operate at ambient temperatures ranging from -40°C to 65 °C and at hydrogen gas temperatures ranging from -40 °C to 85 °C.
 CcH₂: The nozzle shall be designed to operate at ambient temperatures ranging from -40 °C to 65 °C and at hydrogen gas temperatures ranging from -40 °C to 65 °C.
- 5.10 CGH₂: The nozzle shall not have any mechanical means of opening the receptacle check valve.

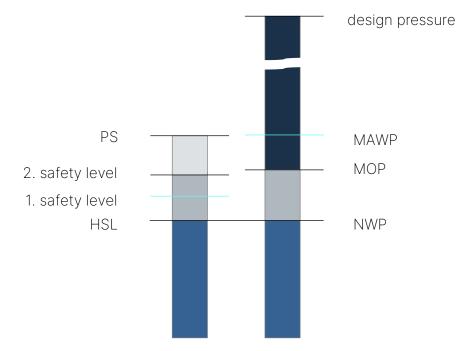
CcH₂: The nozzle may have mechanical means for opening the receptacle check valve.

5.17 Note: The communication has to be observed for the CGH₂ Systems.

Note: The communication can be observed for the CcH₂ Systems.

6.1 CGH₂: Standard receptacle dimensions: A CGH₂ receptacle shall be in accordance with the design specifications detailed in Annex B1.

 CcH_2 : Standard receptacle dimensions (under investigation): A CcH_2 receptacle shall be in accordance with the design specifications detailed in Annex B2.


Note: A CcH_2 receptacle shall be in accordance with the design specifications detailed at a later stage.

6.9 a) CGH₂: The receptacle shall be designed to operate at hydrogen gas temperatures ranging from -40 °C to 85 °C.

CcH₂: The receptacle shall be designed to operate at hydrogen gas temperatures ranging from -251° C to 85 °C.

Definition of Cryogas storage system pressure level (40 MPa)

The system pressure according to ISO Standard is 40 MPa.

refuelling station

nomenclature	description	HSL x	p [MPa]
PS	Minimum dispenser component pressure rating	1.24	49.5
2. safety level	PRD: fully open	1.21	48.4
	PRD: start (min. activate pressure)	1.10	44.0
1. safety level	refuelling control system: stop refuelling	1.05	42
HSL	hydrogen service level	1.00	40

vehicle

nomenclature	description	NWP x	p [MPa]
design pressure	vessel - burst pressure	2.25	90
MAWP	PRD	1.24	49.5
МОР	blow off pressure	1.125	45
NWP	nominal working pressure	1.00	40

Figure 1: Definition of pressure level