

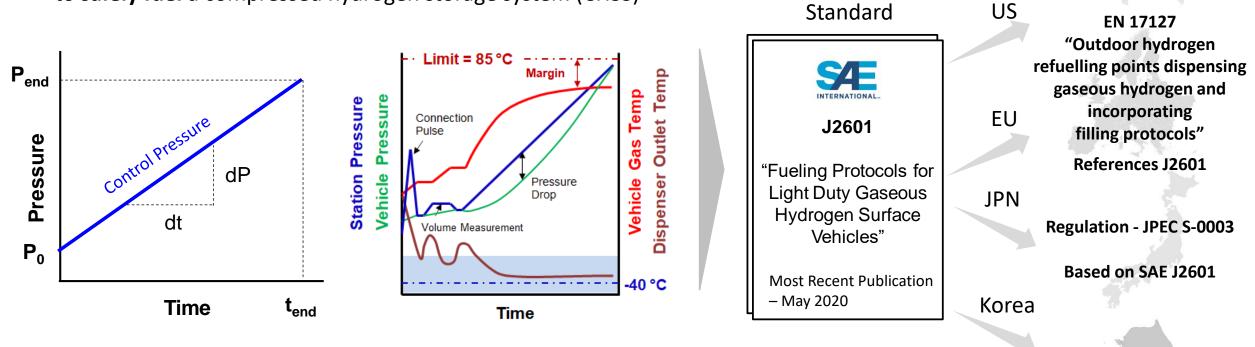
Overview of the SAE J2601 MC Formula H2 Fueling Protocol

Steve Mathison National Renewable Energy Lab SAE Fuel Cell Standards Committee Chair, Interface Task Force Document Sponsor, SAE J2601 Spencer Quong Quong & Associates

Presentation at the Workshop Organized by CEP and Hydrogen Europe, January 2021

Background

- > Overview of the MC Formula Protocol
- MC Formula Validation Calculator
- > MC Formula Protocol Validation (CSA HGV 4.3)
- > Usage of MC Formula Protocol in the United States
- Conclusion


Background

- > Overview of the MC Formula Protocol
- MC Formula Validation Calculator
- MC Formula Protocol Validation (CSA HGV 4.3)
- Usage of MC Formula Protocol in the United States
- Conclusion

Fueling Protocol Overview

What is a fueling protocol?

A set of procedures that dictate the process which a station follows to safely fuel a compressed hydrogen storage system (CHSS)

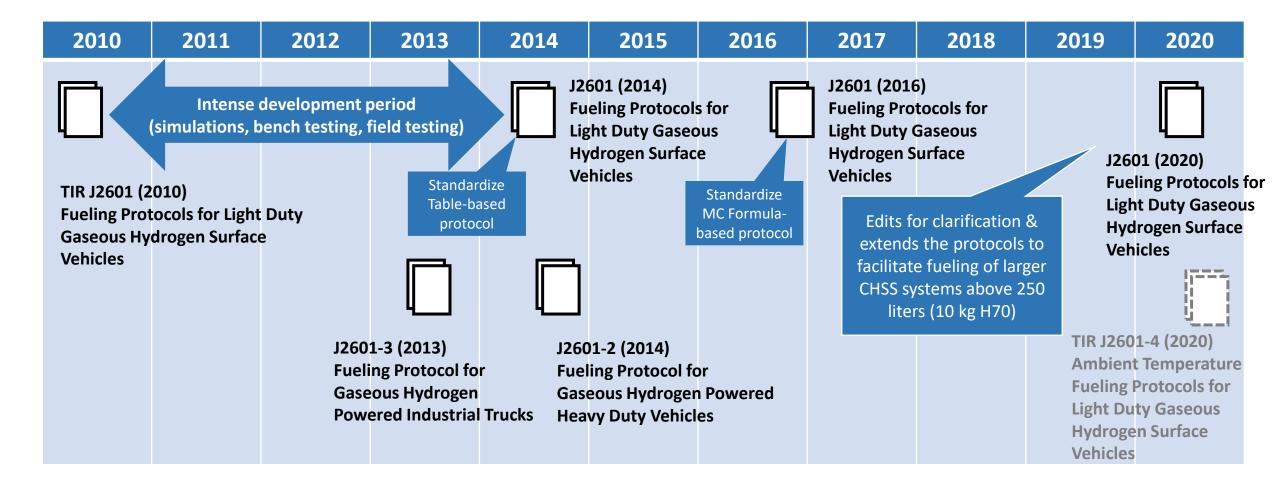
Fueling Protocol

Why is a fueling protocol needed?

- > To ensure that the CHSS stays within its operational boundaries (pressure and temperature)
- > A fueling protocol can dictate the **fueling speed** $\left(\frac{dP}{dt}, t_{end}\right)$ & end pressure P_{end}
- Currently, SAE J2601 is the worldwide recognized fueling protocol standard for light duty fueling
- A new revision to J2601 was just published in May 2020 -- https://saemobilus.sae.org/content/J2601_202005/

Currently No Federal

Regulation


All public stations utilize J2601

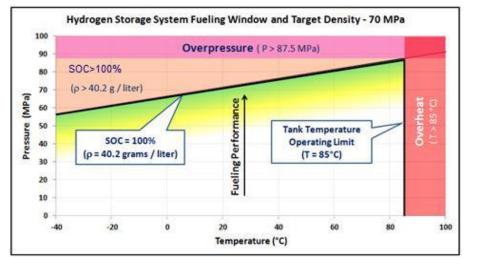
All public stations

required to utilize

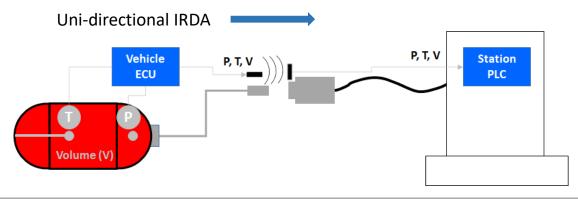
J2601

History of SAE H₂ Fueling Protocols

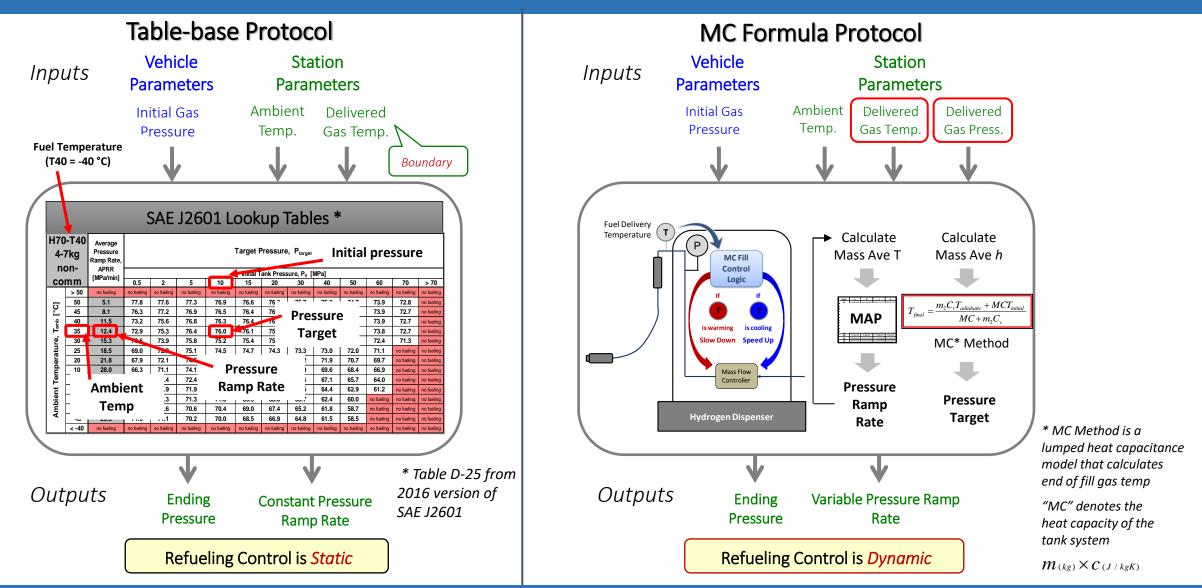
• There are a family of SAE J2601 fueling protocol standards to address the needs of light duty, H35 heavy duty, and forklifts


SAE J2601 Philosophy

Philosophy for SAE J2601 Fueling Protocols:

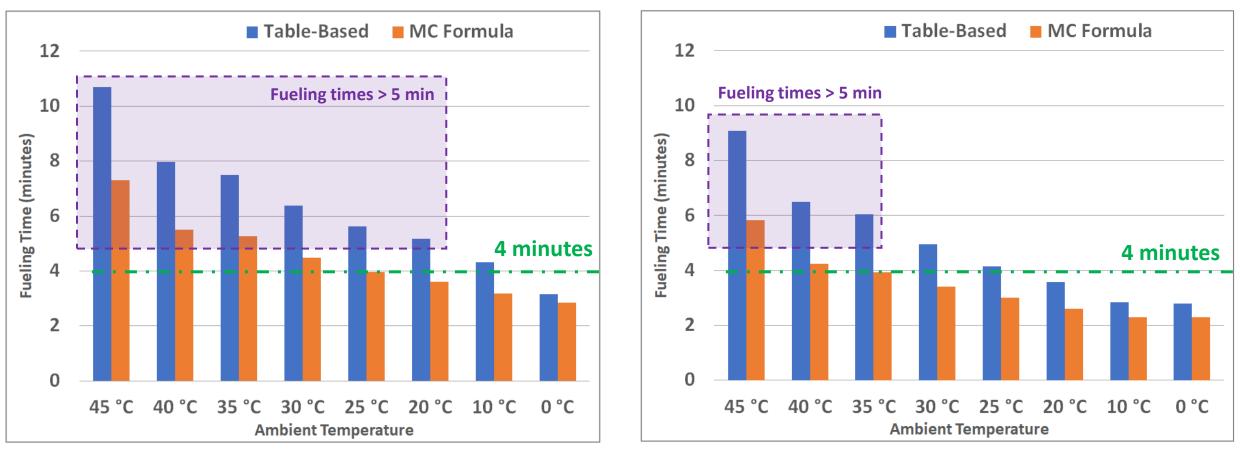

- H₂ Station is fully responsible for safe fueling of the vehicle
- No safety critical information from vehicle is used *
- Worst case boundary conditions are assumed

Storage Vessel Operational Window **


** Figure 3 from 2020 version of SAE J2601

Fueling Can be Conducted With or Without Communications

- * Communicated data is not used for **safety related functions** - it is **only used for fill quality**
- The current SAE J2601 is based on this philosophy which dictates the higher level structure of the fueling protocols
- This philosophy was chosen after much discussion in the SAE ITF


J2601 Protocol Options and Their Structures

- There are two standard fueling protocols in SAE J2601 Table-based and MC Formula
- Table-based protocol uses static control whereas MC Formula uses feed-forward dynamic control

Fueling Performance - Potential

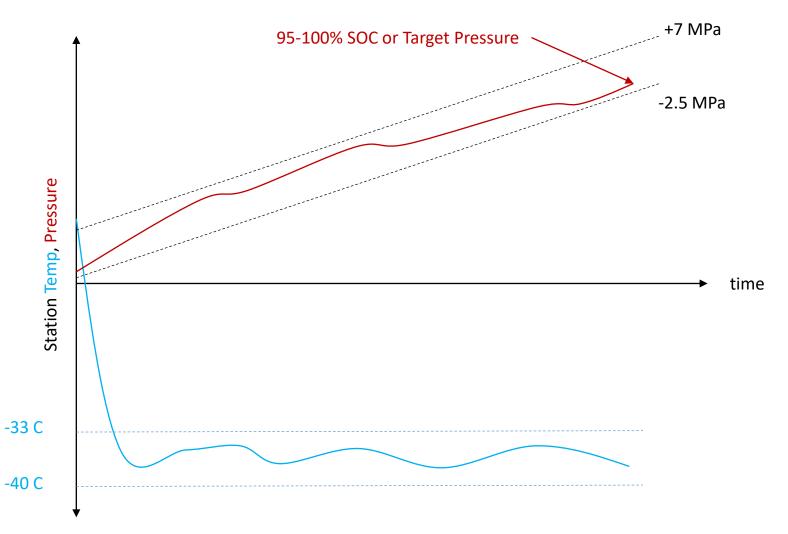
Initial Pressure = 2 MPa (~ 4% SOC)

Assumptions → 2020 SAE J2601 Standard, Vehicle CHSS size = 122.4 L (Toyota Mirai), Fuel Delivery Temperature = -36 °C, End of Fill SOC = 98%

- The MC Formula fueling protocol is **currently the state-of-the-art**
- With sufficiently cold pre-cooling temperatures, the majority of fills take less than 4 minutes

Initial Pressure = 10 MPa (~ 20% SOC)

Background


> Overview of the MC Formula Protocol

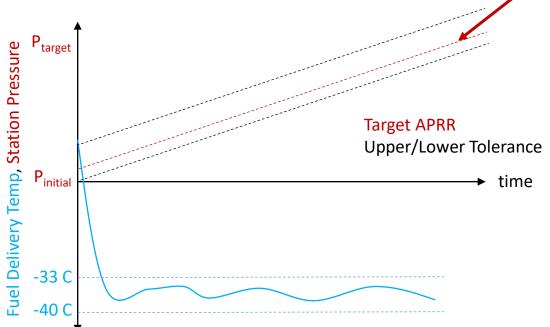
- MC Formula Validation Calculator
- MC Formula Protocol Validation (CSA HGV 4.3)
- Usage of MC Formula Protocol in the United States
- Conclusion

Overview – Generic Fueling Profile

Example shows typical T40 Fill

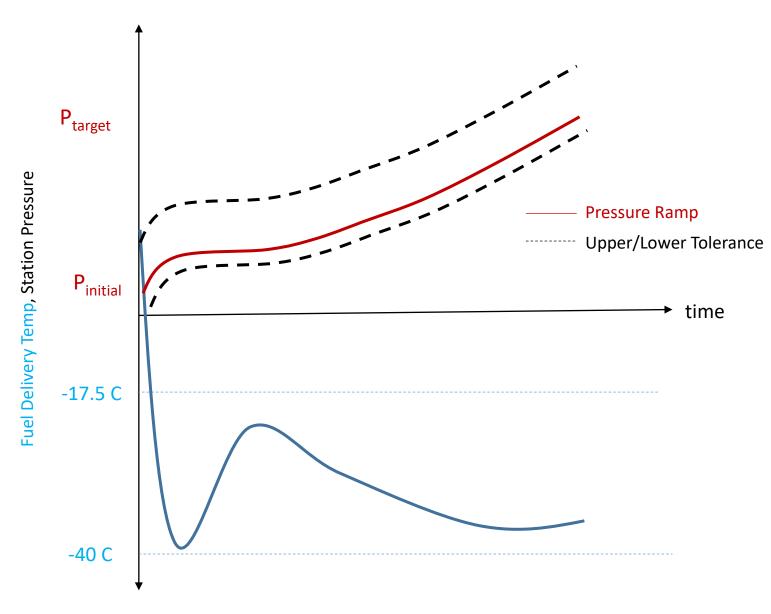
- Station (fuel) temperature between -33 to -40 C
- Pressure within target corridor (+7.0/-2.5 MPa)
- Fill stops at
 - 95-100% SOC (communications) or
 - Target Pressure

Overview – Table Based Fueling Protocol


- Table based Fueling Protocol uses Average Pressure Ramp Rate (APRR) to control fueling speed
- Average Pressure Ramp Rate (APRR) based upon
 - Station Pressure Class (H35 / H70) ——
 - Fuel Delivery Temp Category
 - CHSS Capacity (vehicle tank size) Category
 - Ambient Temperature -

	H70-T40						т	arget Pressu	re, P _{target} [MP	a]				
	Capacity Category B	APFR [MPa/min]						tial Tank Pre	,	-				
	Non-Comm		0,5	2	5	10	15	20	30	40	50	60	70	>70
	>50	no fueling	no fueling	no fueling	no fueling	no fueling	no fueling	no fueling	no fueling	no fueling	no fueling	no fueling	no fueling	no fueling
	50	5,	77,8	77,6	77,3	76,9	76,6	76,2	75,7	75,3	74,7	73,9	72,8	no fueling
	45	8,	76,3	77,2	76,9	76,5	76,4	76,2	75,6	75,3	74,7	73,9	72,7	no fueling
	40	11,5	73,2	75,6	76,8	76,3	76,4	76,2	75,6	75,3	74,6	73,9	72,7	no fueling
ို့	35	12,4	72,9	75,3	76,4	76,0	76,1	75,9	75,3	75,1	74,5	73,8	72,7	no fueling
Taut	30	15,3	70,6	73,9	75,8	75,2	75,4	75,1	74,3	74,1	73,3	72,4	71,3	no fueling
ature,	25	18,5	69,0	72,8	75,1	74,5	74,7	74,3	73,3	73,0	72,0	71,1	no fueling	no fueling
berat	20	21,8	67,9	72,1	74,5	73,7	74,0	73,4	72,2	71,9	70,7	69,7	no fueling	no fueling
Temper	10	28,0	66,3	71,1	74,1	73,2	72,4	71,6	70,9	69,6	68,4	66,9	no fueling	no fueling
	0	28,5	74,0	73,4	72,4	70,6	70,7	69,6	68,6	67,1	65,7	64,0	no fueling	no fueling
Ambient	-10	28,5	73,4	72,9	71,9	70,0	70,0	68,4	66,5	64,4	62,9	61,2	no fueling	no fueling
◄	-20	28,5	72,9	72,3	71,3	71,0	69,5	68,0	65,7	62,4	60,0	no fueling	no fueling	no fueling
	-30	28,5	72,1	71,6	70,6	70,4	69,0	67,4	65,2	61,8	58,7	no fueling	no fueling	no fueling
	-40	28,5	71,6	71,1	70,2	70,0	68,5	66,9	64,8	61,5	58,5	no fueling	no fueling	no fueling
	<-40	no fueling	no fueling	no fueling	no fueling	no fueling	no fueling	no fueling	no fueling	no fueling	no fueling	no fueling	no fueling	no fueling

Overview – Table Based Fueling Protocol: APRR


- For Table Based Fueling Protocol, target APRR
 - Does not directly depend on Fuel Delivery Temperature (only the "T" category)
 - Constant
- Calculated at start of fill

Γ		H70-T40						Т	arget Pressu	re, P _{target} [MP	a]				
	Capacity Category B Non-Comm		APRR [MPa/min]					In	itial Tank Pre	ssure, P ₀ [MF	Pa]				
				0,5	2	5	10	15	20	30	40	50	60	70	>70
Γ		>50	no fueling	no fueling	no fueling	no fueling	no fueling	no fueling	no fueling	no fueling	no fueling	no fueling	no fueling	no fueling	no fueling
		50	5,1	77,8	77,6	77,3	76,9	76,6	76,2	75,7	75,3	74,7	73,9	72,8	no fueling
		45	8,1	76,3	77,2	76,9	76,5	76,4	76,2	75,6	75,3	74,7	73,9	72,7	no fueling
		40	11,5	73,2	75,6	76,8	76,3	76,4	76,2	75,6	75,3	74,6	73,9	72,7	no fueling
	្ល	35	12,4	72,9	75,3	76,4	76,0	76,1	75,9	75,3	75,1	74,5	73,8	72,7	no fueling
	Tamb	30	15,3	70,6	73,9	75,8	75,2	75,4	75,1	74,3	74,1	73,3	72,4	71,3	no fueling
	nperature,	25	18,5	69,0	72,8	75,1	74,5	74,7	74,3	73,3	73,0	72,0	71,1	no fueling	no fueling
	oera	20	21,8	67,9	72,1	74,5	73,7	74,0	73,4	72,2	71,9	70,7	69,7	no fueling	no fueling
	Ten	10	28,0	66,3	71,1	74,1	73,2	72,4	71,6	70,9	69,6	68,4	66,9	no fueling	no fueling
1		0	28,5	74,0	73,4	72,4	70,6	70,7	69,6	68,6	67,1	65,7	64,0	no fueling	no fueling
	Ambient	-10	28,5	73,4	72,9	71,9	70,0	70,0	68,4	66,5	64,4	62,9	61,2	no fueling	no fueling
	▲	-20	28,5	72,9	72,3	71,3	71,0	69,5	68,0	65,7	62,4	60,0	no fueling	no fueling	no fueling
		-30	28,5	72,1	71,6	70,6	70,4	69,0	67,4	65,2	61,8	58,7	no fueling	no fueling	no fueling
		-40	28,5	71,6	71,1	70,2	70,0	68,5	66,9	64,8	61,5	58,5	no fueling	no fueling	no fueling
	[<-40	no fueling	no fueling	no fueling	no fueling	no fueling	no fueling	no fueling	no fueling	no fueling	no fueling	no fueling	no fueling	no fueling

Overview – MC Formula: Pressure Ramp Rate

- For MC Fueling Protocol, Pressure Ramp Rate (PRR) is
 - Based directly upon on Fuel Delivery Temperature
 - Varies during the fill
 - Calculated every second of fill

Overview – MC-F: Fuel Delivery Temperature Categories

- Same as Table based, except for T40 \rightarrow T40 upper limit temperature increases with decreasing ambient temperature
- Based upon the end of fill value of the Mass Average Temperature (MAT) started at t = 30 seconds (MAT₃₀)
- MAT₃₀ may exceed limits during the fill the "T" rating is based on MAT₃₀ at the end of the fill

	Delivery ure Category	$-40 \ ^{\circ}\text{C} \le MAT_{30} \le T40 limit$	$-33 ^{\circ}\text{C} < MAT_{30} \le -26 ^{\circ}\text{C}$	$-26 ^{\circ}\text{C} < MAT_{30} \le -17.5 ^{\circ}\text{C}$
Station	35 MPa NWP	H35-T40	H35-T30	H35-T20
Designator	70 MPa NWP	H70-T40	H70-T30	H70-T20

where

		_
T _{amb} (°C)	T40limit (°C)	
≥20	-33	
15	-32.5	
10	-32	
0	-29	
-10	-28	
-20	-27	
-30	-26.5	
-40	-26	

For the T40 category, the fuel delivery temperature can be warmer at cold ambient temperatures

Overview – MC Formula: CHSS Categories

• MC Formula is the same as Table-based, with nomenclature A, B, C, and D (H70 only)

Pressure Class	Total Amount of Hydrogen in CHSS at 100% SOC (kg)	Water Volume of CHSS (L)	CHSS Capacity Category Identifier
H35	1.19 to 2.39	49.7 to 99.4	A
H35	2.39 to 4.18	99.4 to 174.0	В
H35	4.18 to 5.97	174.0 to 248.6	С
H70	2.00 to 4.00	49.7 to 99.4	A
H70	4.00 to 7.00	99.4 to 174.0	В
H70	7.00 to 10.00	174.0 to 248.6	С
H70	>10.00	>248.6	D

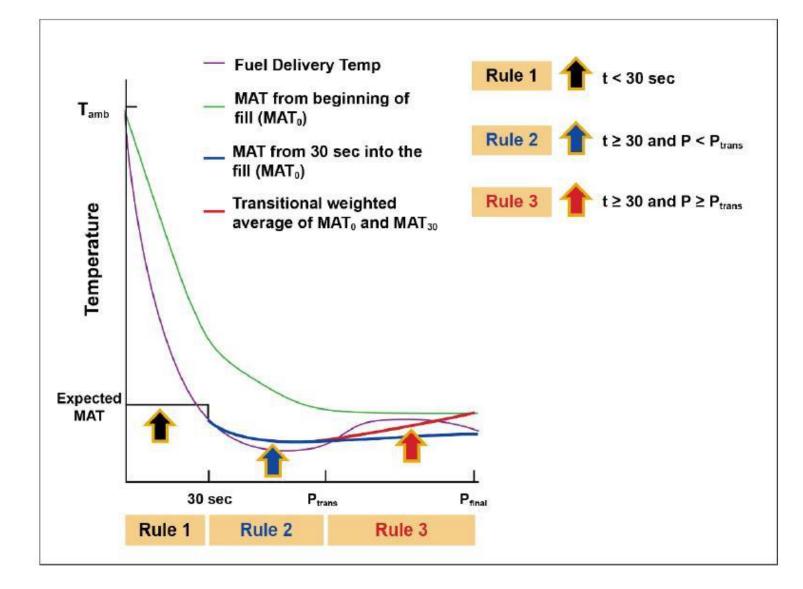
New in 2020 SAE J2601 to accommodate MD/HD vehicles

- MC Formula can be used with and without communications same as Table-based
- Signals are the same

- ID: Protocol Identifier
- VN: Version Number
- TV: Tank Volume
- RT: Receptacle Type
- FC: Fueling Command
- MP: Measured Pressure
- MT: Measured Temperature
- OD: Optional Data

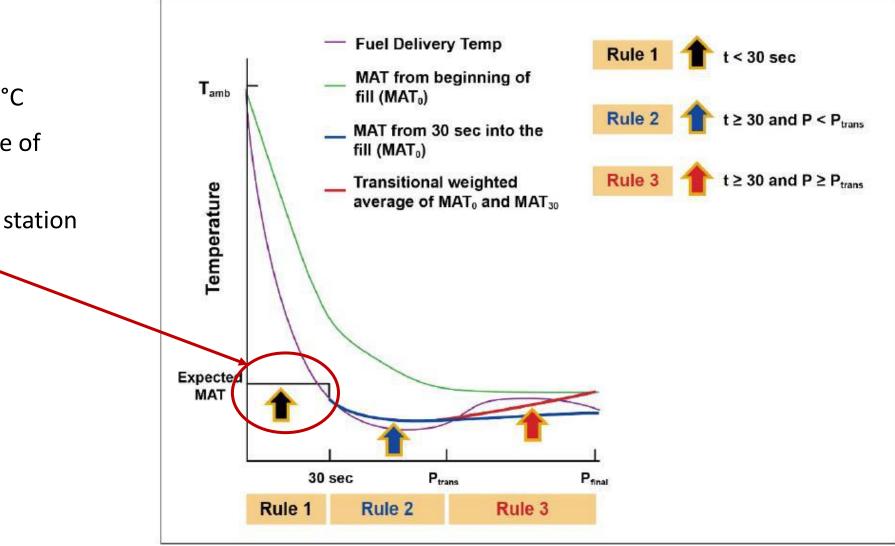
Overview – MC Formula: Process Limits

- All General Requirements from Chapter 6 of SAE J2601 apply to MC Formula and Table-based protocols
 - T_{fuel-inst} >- 40 °C (always)
 - Do not start fill if initial pressure < 0.5 MPa or greater than nominal working pressure (35 or 70 MPa)
 - Station / CHSS pressure ≤ 87.5 MPa (always)
 - Mass flow rate $\leq 60 \text{ g/s}$
 - SOC ≤ 100%
- Additional Requirements for both table-based and MC Formula:
 - Keep station pressure within the pressure corridor
 - -40 °C $\leq T_{amb} \leq 50$ °C
 - SOC $\leq 100\%$
 - No more than 10 cycles
 - MAT₃₀ ≤ -17.5 °C

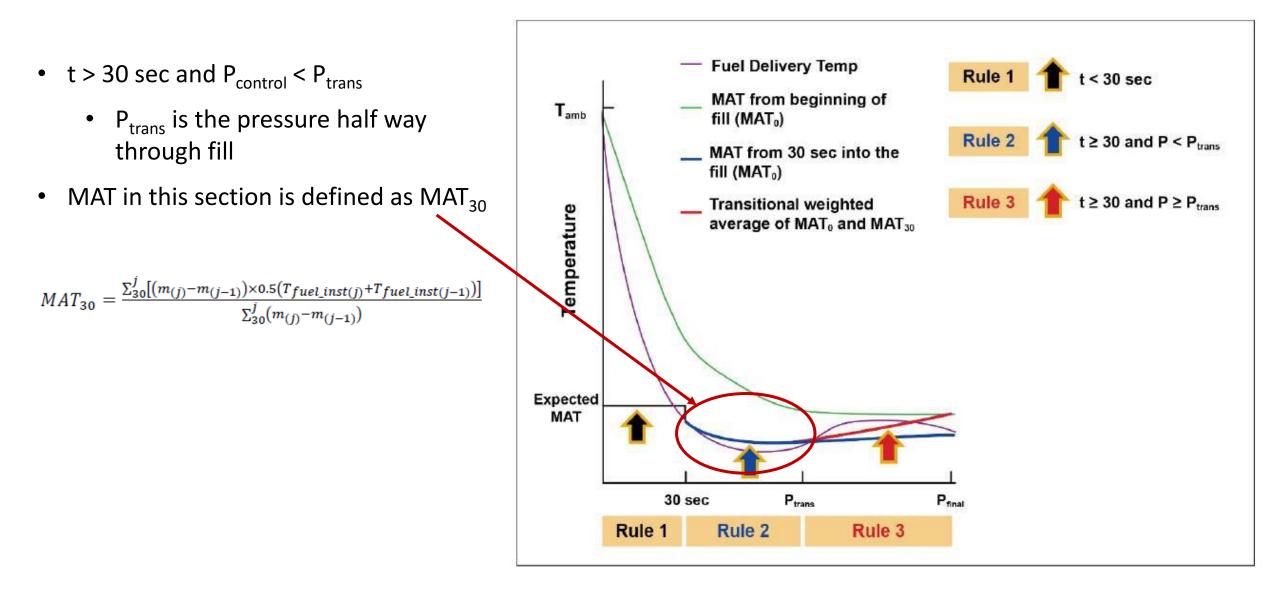

Overview – MC Formula: Key Control Variables

- Mass Average Fuel Delivery Temperature MAT
- The time required to fill from minimum to maximum pressure under hot case conditions t_{final}
- Variable Pressure Ramp Rate PRR
- Target Pressure P_{target}
- MAT, t_{final}, and PRR are calculated every second

$\mathsf{MAT} \rightarrow \mathsf{t}_{\mathsf{final}} \rightarrow \mathsf{PRR}$

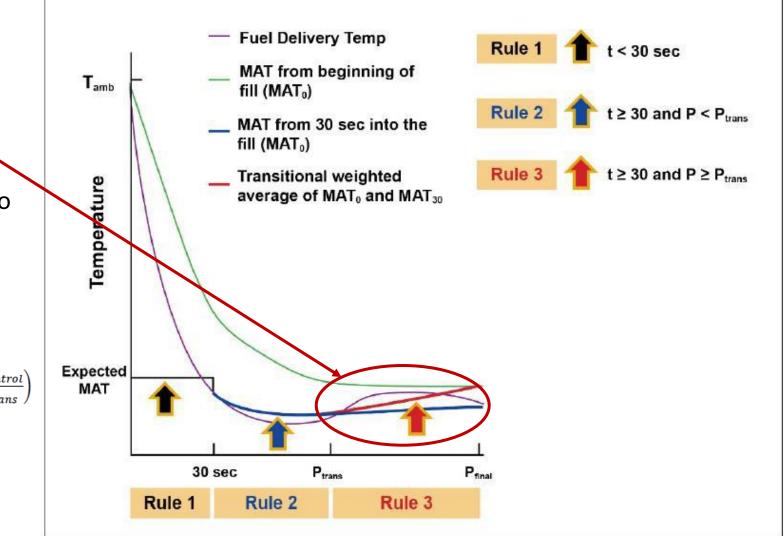

Overview – MC Formula: Rules for Calculating MAT

- MAT is very high at start of fill
 - Would cause large changes in ramp rate
- To reduce this effect MAT is broken into 3 rules
 - MAT_{expected} first 30 sec
 - MAT₃₀ calculated from 30 sec on
 - MAT₀ calculated from beginning
 - MAT_c the MAT value used for control – it is a function of the three rules



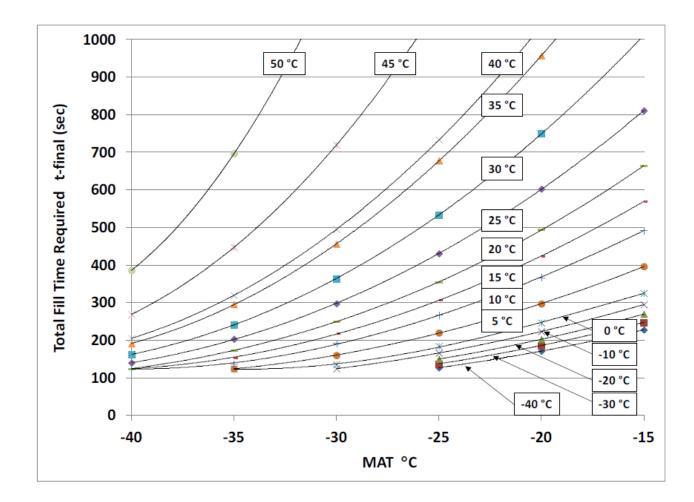
Overview – MC Formula: Rule 1 - Expected MAT

- t < 30 sec
- $-36 \degree C \le MAT_{expected} \le -17.5 \degree C$
- MAT_{expected} ≈ Expected value of MAT₀ at end of fill
- MAT_{expected} is estimated by station designer


Overview – MC Formula: Rule 2 - MAT₃₀

Overview – MC Formula: Rule 3 – Transitional MAT

- t > 30 sec and $P_{control} > P_{trans}$
- MAT in this section is a transitionally weighted average of MAT₃₀ and MAT₀
- The weighting function gradually increases the weighting from MAT₃₀ to MAT₀
- At the end of the fill, the weighting is almost fully MAT_0


$$MAT_{C} = MAT_{30} \times \left(\frac{P_{final} - P_{control}}{P_{final} - P_{trans}}\right) + MAT_{0} \times \left(1 - \frac{P_{final} - P_{control}}{P_{final} - P_{trans}}\right)$$

Overview – MC Formula: tfinal and MAT

- \succ t_{final} is the time required to fill from a minimum pressure to a maximum pressure under hot case conditions
- \succ t_{final} is a function of the ambient temperature and the mass average of the fuel delivery temperature (MAT)
- t_{final} is derived using computer fueling simulations under hot case conditions
- As shown in the graph to the right, a polynomial equation can be drawn between the data points with a near perfect fit (R² > 0.999)
- This results in the following equation where a, b, c and d are derived using a best fit regression:

 $t_{final} = a \times MAT^3 + b \times MAT^2 + c \times MAT + d$

Overview – MC Formula: tfinal and MAT

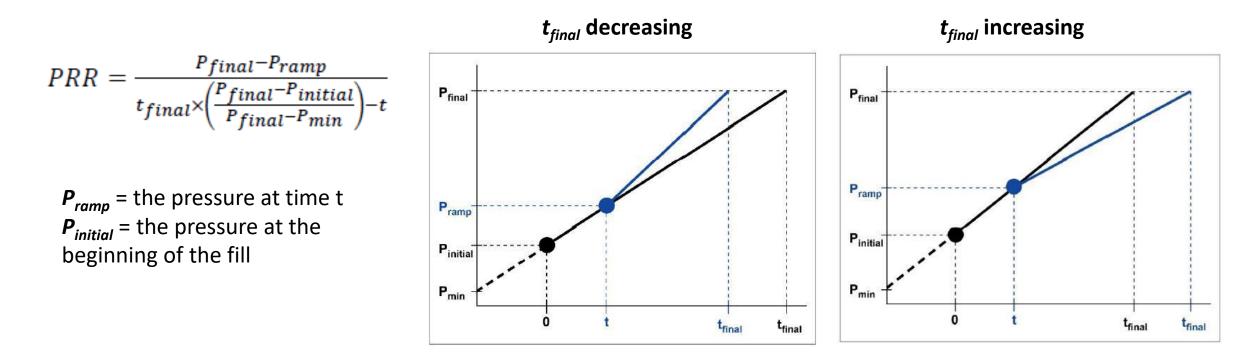
The final equation for t_{final} is adjusted to account for real world variabilities

 $t_{final} = \alpha \times \beta \times [a \times MAT^3 + b \times MAT^2 + c \times MAT + d]$

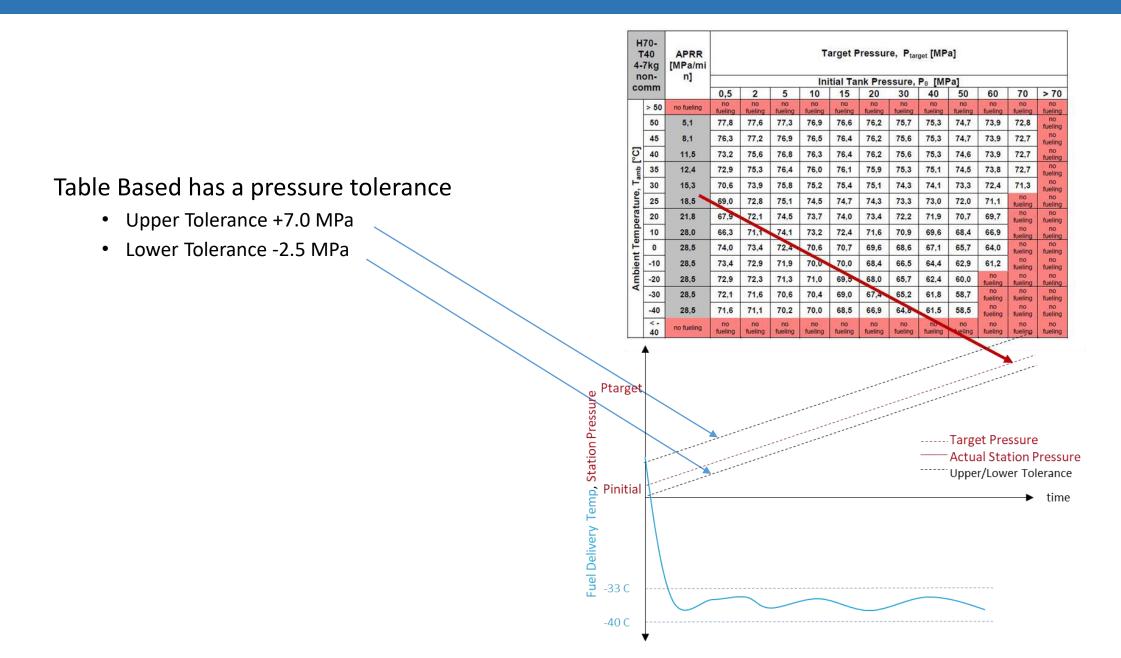
- α = Compensates for non-linearity of PRR
- β = Compensates for pressure tolerance
- a,b,c,d are stored in tables J1 J16 in Appendix J of SAE J2601 (see example below):

T _{amb} (°C / K)	а	b	С	d
50 / 323.15	1.1462427	-805.95758	188923.82	-14763290
45 / 318.15	0.12728894	-88.669728	20627.75	-1602334
40 / 313.15	0.01362863	-8.260816	1651.2	-108438
35 / 308.15	0.00459226	-1.80716	112.064	14112
30 / 303.15	0.000043	1.14407	-526.8	60268
25 / 298.15	0.00023559	0.7645	-383.873	45116.8
20 / 293.15	0.00202084	-0.72322	17.42	9783
15 / 288.15	0.00431385	-2.519	480.38	-29613.4
10 / 283.15	0.0023259	-1.12621	152.89	-3780
5 / 278.15	-0.00146812	1.58788	-497.62	48436
0 / 273.15	0.00411881	-2.69214	590.798	-43511
-10 / 263.15	0.00337783	-2.15258	458.639	-32638.6
-20 / 253.15	-0.0035514	3.035924	-837.335	75323
-30 / 243.15	0.0055517	-3.842547	893.505	-69736
-40 / 233.15	0.0035207	-2.346046	525.1	-39448

Table J2 - Table of coefficients for 99.4 liter boundary CHSS with CD = FALSE and Pmin = 0.5


Overview – MC Formula: Variable Pressure Ramp Rate

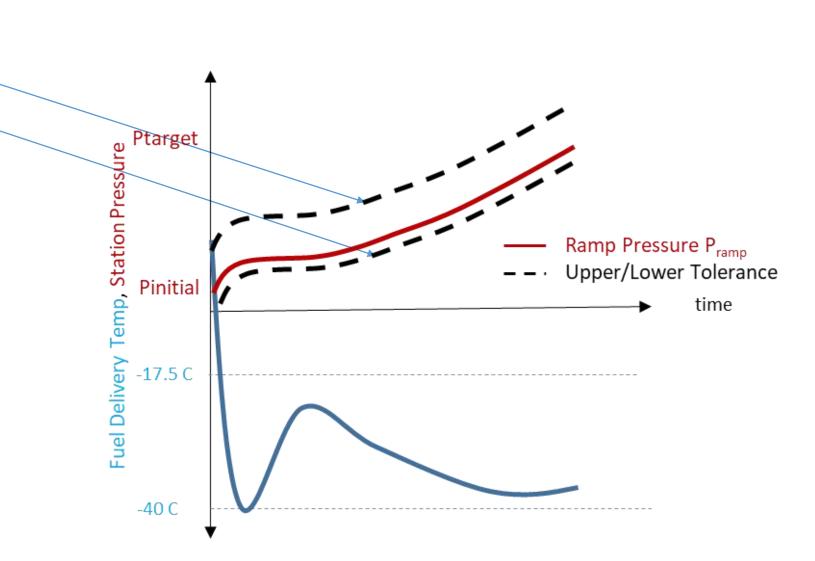
The lookup tables in SAE J2601 provide values for APRR. APRR can be defined in the terms below.


- $APRR = \frac{P_{final} P_{min}}{t_{final}}$ P_{final} = maximum pressure for hot case conditions P_{min} = minimum pressure for hot case conditions t_{final} = time required to fill for t_{final} = time required to fill from minimum to maximum pressure under hot case conditions

With the lookup table, APRR doesn't change during the fill, which means that **t**_{final} is a constant value.</sub>

However, with MC Formula, t_{final} does change during the fill as MAT varies. Therefore, we need a different equation.

Overview – MC Formula: Pressure Corridor

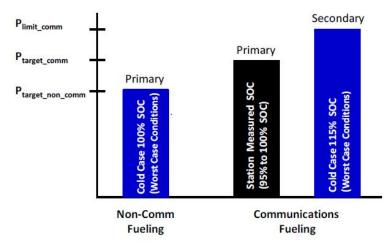


Overview – MC Formula: Pressure Corridor

MC Method has the same tolerance

- Upper Tolerance +7.0 MPa
- Lower Tolerance -2.5 MPa

 Tolerance limits stay constant, but follow the ramp pressure which varies with PRR



Overview – MC Formula: End of Fill Determination

Table-Based Approach

- Non-Communication Fill
 - Non-Communication Target Pressure in tables
 - 100% Cold Case SOC
- Communication Fill Primary
 - SOC= 95-100% using MT
- Communication Secondary
 - Communication Target Pressure in tables
 - These values typically result in limiting SOC to < 115% Cold Case SOC (in the case that the MT value from the vehicle is wrong)

H70- T40 4-7kg non-		APRR [MPa/mi		Target Pressure, P _{target} [MPa]												
		n]		Initial Tank Pressure, P ₀ [MPa]												
co	mm		0,5	2	5	10	15	20	30	40	50	60	70	> 7		
	> 50	no fueling	no tueing	no tueling	no fueitng	no fueling	no fueling	no fueling	no tueing	no tueling	no tueling	no fueling	no fueing	no fuelin		
	50	5,1	77,8	77,6	77,3	76,9	76,6	76,2	75,7	75,3	74,7	73,9	72,8	no fuelin		
	45	8,1	76,3	77,2	76,9	76,5	76,4	76,2	75,6	76,3	74,7	73,9	72,7	no fuelin		
[]C]	40	11,5	73,2	75,6	76,8	76,3	76,4	76,2	75,6	76,3	74,6	73,9	72,7	no fuelin		
amb	35	12,4	72.9	75,3	76,4	76.0	76,1	75,9	75,3	75,1	74.5	73.8	72.7	no fuelin		
F.	30	15.3	70,6	73,9	75,8	75,2	75,4	75,1	74,3	74,1	73,3	72,4	71,3	no		
tur	25	18,5	09,0		75,1	74,5	74.7	74.3	73,3	73.0	72,0	71,1	no fueling	no fuelin		
eral	20	21,8	67.9	72,1	74,5	73,7	74,0	73,4	72,2	71,9	70,7	69,7	no fuelina	no fuelin		
Temperature	10	28,0	66,3	71,1	74,1	73,2	72,4	71,6	70,9	69,6	68,4	66,9	niq fuciling	no fuelin		
t Te	0	28,5	74.0	73.4	72.4	70,6	70,7	69,6	68.6	67,1	65.7	64.0	no tueing	no fuelin		
ien	-10	28,5	73,4	72,9	71,9	70.0	70,0	68.4	66,5	64,4	62.9	61.2	no tueing	no fuelin		
Ambient	-20	28,5	72.9	72,3	71,3	71,0	69,5	68.0	65,7	62,4	60.0	no fueling	no tueling	no tuelin		
4	-30	28,5	72,1	71,6	70,6	70,4	69,0	67,4	65,2	61,8	58,7	no fueling	no fueling	nó fuelin		
	-40	28,5	71,6	71,1	70,2	70,0	68,5	66,9	64,8	61,5	58,5	no fueling	no fueling	no fuelin		
	<- 40	no fueling	no fueling	no fueling	no fueling	no fueling	no fueling	na fueling	no fueling	no fueling	no tusting	no fueling	no fueling	no fuelir		

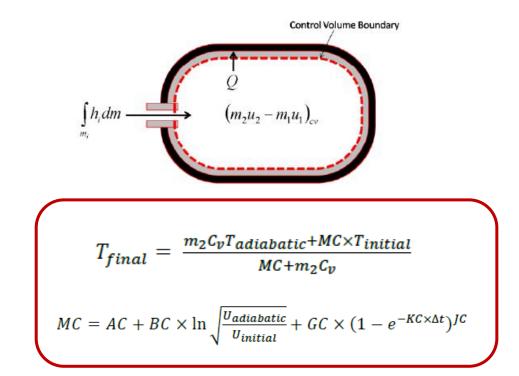
Overview – MC Formula: End of Fill Determination

MC Formula Approach

- Option 1: Use the MC Method (See Next Slide)
- Option 2: Ending Pressure Tables
 - Non-Comm
 - Communication Fill Primary
 - Pressure target based on 95-100% SOC using MT
 - Communication Fill Secondary
 - Pressure Limit
 - These values typically result in limiting SOC to < 115% Cold Case SOC (in the case that the MT value from the vehicle

Ca	0-T40 HSS pacity tegory		М	C Form	ula - Ta	rget Pro	essure,	P target_n	on_comm	[MPa]				
	čĺ		Initial Tank Pressure, Pinitial [MPa]											
-	lon- omm	< 5 No interpolation	5	10	15	20	30	40	50	60	70	> 70		
	> 50	no fueling	no fueling	no fueling	no fueling	no fueling	no fueling	no fueling	no fueling	no fueling	no fueling	no fueling		
	50	78.3	78.3	77.7	77.2	77.1	76.3	75.8	75.1	74.2	72.8	no fueling		
ုပ္	45	77.8	78.1	77.6	77.0	77.2	76.4	76.0	75.1	74.2	72.8	no fueling		
amp	40	77.6	77.9	77.3	76.7	77.0	76.2	75.9	75.0	74.2	72.7	no fueling		
Tar	35	77.0	77.4	76.8	76.2	76.6	75.8	75.6	74.8	74.0	72.7	no fueling		
é	30	76.3	76.7	76.0	76.2	75.7	74.8	74.5	73.6	72.7	71.3	no fueling		
atu	25	75.5	75.9	75.2	75.3	74.8	73.7	73.4	72.3	71.3	no fueling	no fueling		
emperature,	20	74.8	75.0	74.1	74.3	73.7	72.5	72.1	71.0	69.9	no fueling	no fueling		
du	10	73.1	73.1	72.0	72.3	71.6	70.8	69.6	68.6	67.0	no fueling	no fueling		
Ter	0	71.6	71.6	71.2	70.2	69.4	68.4	67.1	65.8	64.1	no fueling	no fueling		
Ĕ	-10	70.9	70.9	70.4	69.1	67.7	66.0	64.4	63.0	61.2	no fueling	no fueling		
Ambient	-20	70.2	70.2	69.7	68.4	67.1	64.9	62.0	60.1	no fueling	no fueling	no fueling		
E	-30	69.3	69.3	68.9	67.7	66.3	64.3	61.4	58.5	no fueling	no fueling	no fueling		
◄	-40	68.8	68.8	68.4	67.2	65.9	63.9	61.1	58.4	no fueling	no fueling	no fueling		
	< -40	no fueling	no fueling	no fueling	no fueling	no fueling	no fueling	no fueling	no fueling	no fueling	no fueling	no fueling		

Table K3 – MC Formula Non-Communication Pressure Targets (H70-T40, CHSS Capacity Category C)

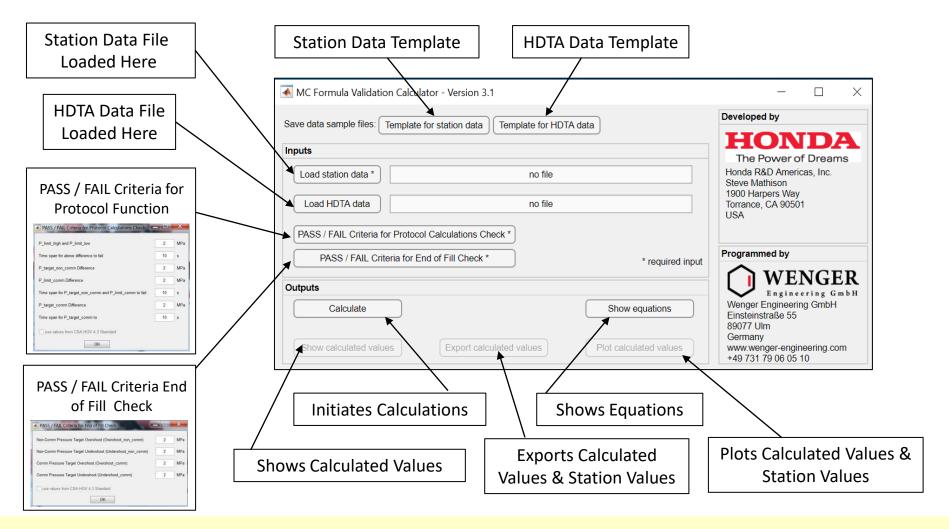

Table K30 – MC Formula Communication Pressure Limits (H70-T40, CHSS Capacity Category C)

	C Ca	0-T40 HSS pacity tegory C		MC For	mula -			n Press essure, <i>P</i>			_comm [N	IPa]	
	С	omm	< 5 No interpolation	5	10	15	20	30	40	50	60	70	> 70
		> 50	no fueling	no fueling	no fueling	no fueling	no fueling	no fueling	no fueling	no fueling	no fueling	no fueling	no fueling
-		50	83.5	83.5	86.9	86.6	86.3	85.6	84.7	83.7	82.5	81.0	no fueling
	°.	45	00.5	83.5	87.0	86.7	86.2	85.2	84.1	82.8	81.4	79.6	no fueling
	amb	40	83.5	83.5	87.0	86.4	85.9	84.6	83.3	81.8	80.2	78.2	no fueling
	Tar	35	83.5	83.5	87.0	86.4	85.9	84.6	83.2	81.7	80.1	78.2	no fueling
	e,	30	83.5	83.5	86.9	86.3	85.6	84.2	82.6	81.0	79.2	77.2	no fueling
	Ę	25	83.5	83.5	86.8	86.0	85.3	83.7	82.0	80.2	78.3	76.1	no fueling
	era	20	83.5	87.1	86.4	85.5	84.7	83.0	81.2	79.3	77.4	75.0	no fueling
	du	10	83.5	86.6	85.7	84.8	83.9	82.0	80.0	78.0	75.9	73.4	no fueling
	Temperature,	0	83.5	85.7	84.6	83.4	82.3	80.0	77.7	75.4	72.9	no fueling	no fueling
		-10	83.5	85.5	84.4	83.2	82.1	79.8	77.5	75.2	72.8	no fueling	no fueling
	oie	-20	83.5	85.3	84.2	83.0	81.9	79.6	77.3	75.0	72.6	no fueling	no fueling
	Ambient	-30	83.5	85.0	83.9	82.8	81.7	79.4	77.1	74.8	72.4	no fueling	no fueling
	∢	-40	83.5	84.8	83.7	82.6	81.4	79.2	76.9	74.6	72.3	no fueling	no fueling
		< -40	no fueling	no fueling	no fueling	no fueling	no fueling	no fueling	no fueling	no fueling	no fueling	no fueling	no fueling

Overview – MC Formula: End of Fill Determination

MC Method Ending Pressure Control

- The MC Method is an analytical method based on a lumped heat capacity model, which utilizes a thermodynamic characterization of a compressed hydrogen storage vessel.
- The characterization is described by MC, which is a parameter that quantifies the capability of the hydrogen storage vessel to absorb the heat generated during fueling, expressed in terms of kJ/K.
- MC is an equation which is a function of initial conditions, fueling conditions, and the fueling time.
- By calculating MC, along with initial CHSS pressure and temperature, and the measurement of enthalpy and mass flow at the dispenser outlet throughout the fill, the end of fill gas temperature in the storage vessel can be calculated, from which a target pressure can be calculated.


The MC Method calculates the "cold case" gas temperature T_{cold} (shown as T_{final} in the equations above). This gas temperature is then used in the equation below to calculate a non-communication Pressure Target and a communication fill Pressure Limit

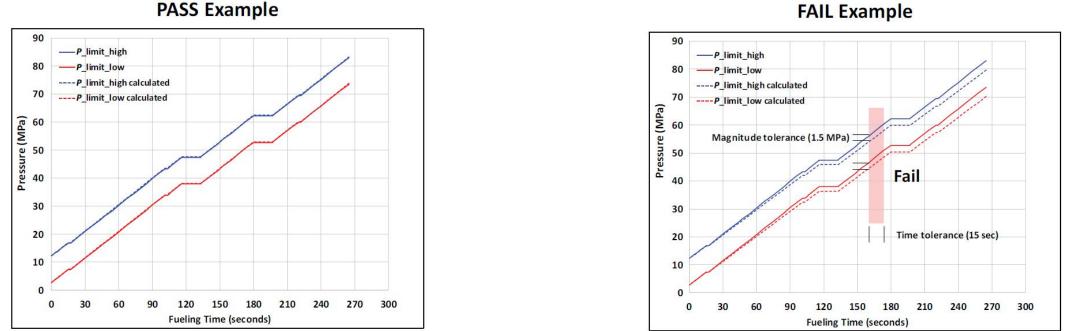
 $P_{target_non_comm} = 0.2782 \times T_{cold} - 4.7145E - 05 \times T_{cold}^2 - 6.18$ $P_{limit_comm} = MINIMUM [83.5, (0.3457 \times T_{cold} - 6.6942E - 05 \times T_{cold}^2 - 7.29)]$

Background

- > Overview of the MC Formula Protocol
- MC Formula Validation Calculator
- MC Formula Protocol Validation (CSA HGV 4.3)
- Usage of MC Formula Protocol in the United States
- Conclusion

The Tool is programmed in MATLAB, but it is an executable Windows File which can run on any PC

There are two versions of the MCFVC – V2.3 aligns with the 2016 SAE J2601 and V3.1 aligns with the 2020 SAE J2601 MCFVC is available for free here \rightarrow https://www.wenger-engineering.de/mc-formula-validation-calculator-login/

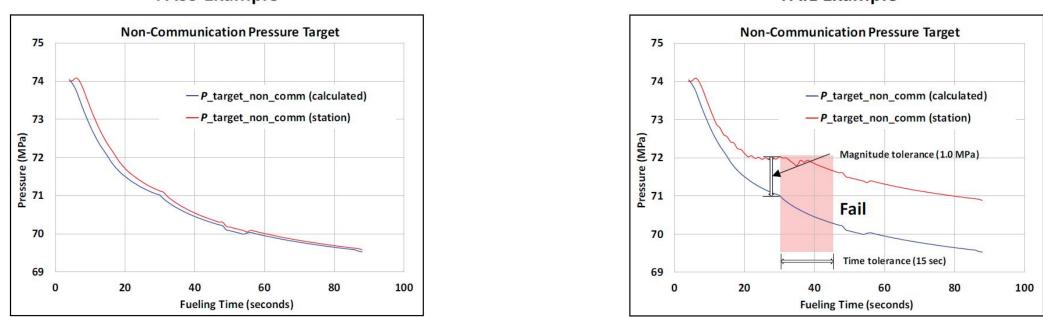

The MCFVC can be used in the following ways:

- By the H2 Dispenser Manufacturer to assist during programming of the PLC can check PLCs values against MCFVC
- > By a testing agency to validate compliance with a validation standard such as CSA HGV 4.3

The MCFVC automatically checks:

- \succ Protocol function \rightarrow ensures that control parameters are calculated correctly
- \succ Process Limits \rightarrow ensures that the station stays within and/or responds appropriately to the process limits

Protocol Function – Pressure Corridor

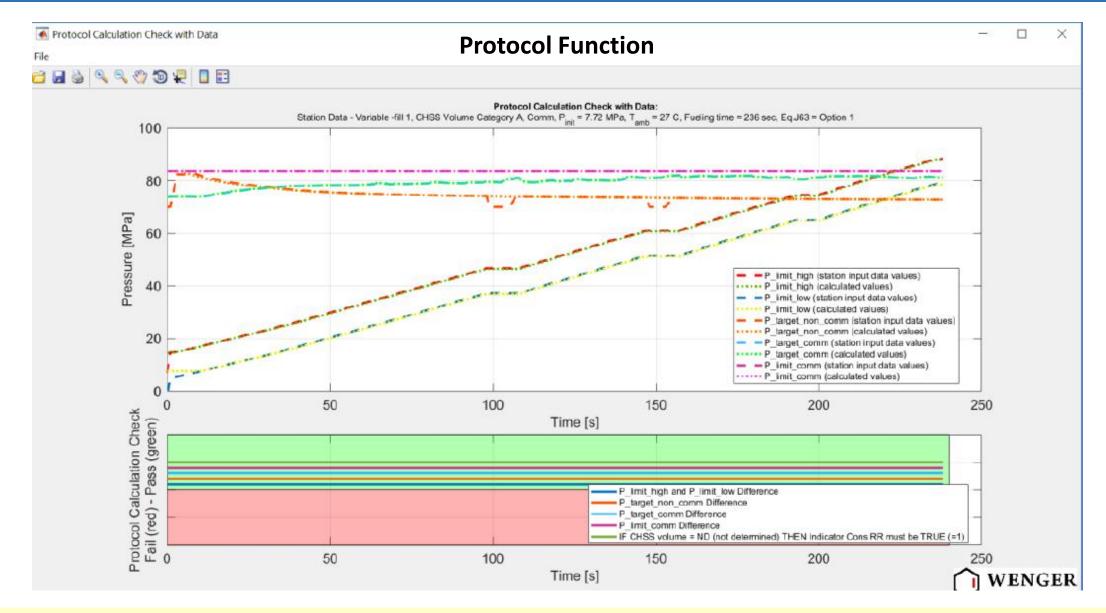

FAIL Example

The MCFVC compares the station's recorded values of the upper and lower pressure limits to the calculator's values

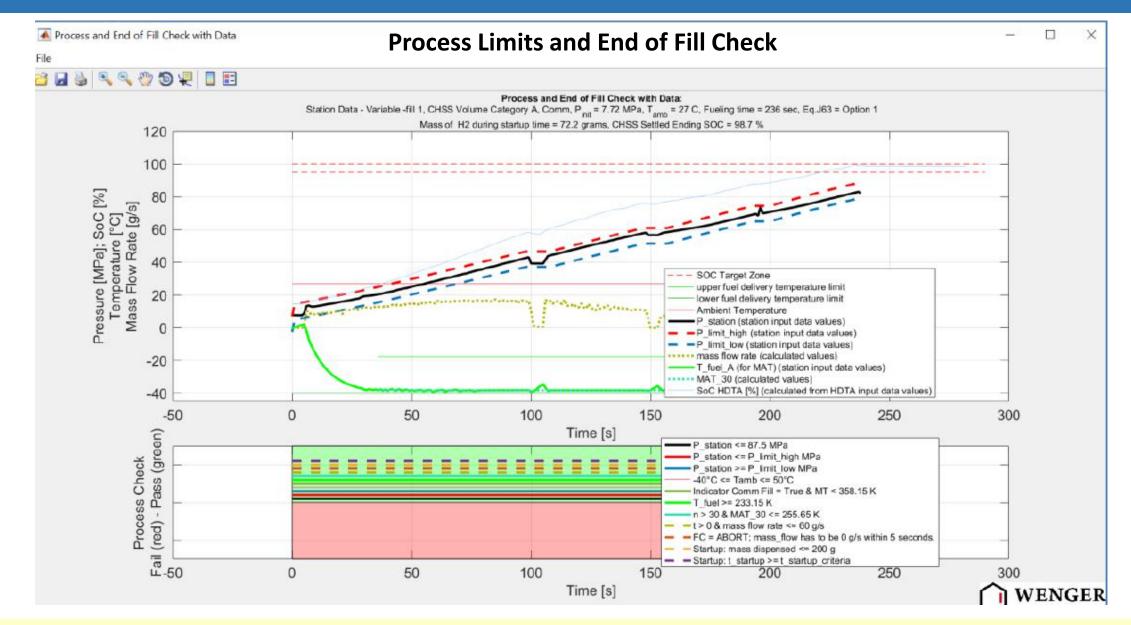
The comparison is made on both a magnitude and time basis, both of which can be set by the user.

In the HGV 4.3 validation standard, the PASS criteria is that the absolute value of the difference between the station value and calculator value shall not exceed 1.5 MPa for 15 consecutive seconds

Protocol Function – Pressure Target


PASS Example

FAIL Example


□ The MCFVC compares the station's recorded value of the calculator's value

□ The comparison is made on both a magnitude and time basis, both of which can be set by the user.

In the HGV 4.3 validation standard, the PASS criteria is that the absolute value of the difference between the station value and calculator value shall not exceed 1.0 MPa for 15 consecutive seconds

If the lines in the bottom plot stay in the green region it indicates PASS. If the lines go into the red region, it indicates FAIL

If the lines in the bottom plot stay in the green region it indicates PASS. If the lines go into the red region, it indicates FAIL

Background

- > Overview of the MC Formula Protocol
- MC Formula Validation Calculator

> MC Formula Protocol Validation (CSA HGV 4.3)

- Usage of MC Formula Protocol in the United States
- Conclusion

MC Formula: Protocol Validation – HGV 4.3

MC Formula Protocol Validation Approach

Validation has three parts (excluding communications specific testing):

Define tolerances for:

Protocol Check

- a) Pressure Corridor
- b) Pressure Targets

To PASS, the station must calculate these parameters correctly (within tolerance) Fault Response Check -

Fault response defined in J2601:

 Check that the dispenser responds correctly to "fault" conditions

To PASS, the station must stop the fill within 5 sec if a process check fails (i.e falls outside allowed limits) **Fueling Evaluation**

Check fill performance,

- 1. Fills complete with no fault conditions
- 2. Ending @ P-targets and SOC

To PASS, the station must stay within the process limits and ending SOC within target range

"FAT or SAT"

With FAT, tests are conducted on <u>representative system</u> in lab or factory

"SAT only" Conducted at the site Limited set of tests

MC Formula: Protocol Validation – HGV 4.3

CSA/ANSI HGV 4.3:19 (current version): Test methods for hydrogen fueling parameter evaluation

HGV 4.3 is currently under revision to align it with the 2020 SAE J2601 and to allow more robust FAT approach

Overview of Testing:

The testing for a dispenser to meet SAE J2601 MC formula-based fueling protocol includes four key areas:

- fault testing to verify the station reacts properly to out-of-bounds conditions;
- communication tests that confirm the proper operation of the vehicle (or test apparatus) to station communication system;
- > protocol function tests to verify the station properly calculates the control parameters; and
- fueling evaluation tests to verify that the station can successfully complete fills while keeping all process parameters in bounds and achieving end of fill targets.

Green = provision for FAT **Blue** = SAT only

Background

- > Overview of the MC Formula Protocol
- MC Formula Validation Calculator
- MC Formula Protocol Validation (CSA HGV 4.3)
- > Usage of MC Formula Protocol in the United States
- Conclusion

MC Formula: Usage in the US (list of public stations in CA)⁴²

Location	Operator
Anaheim, CA	Air Liquide
Campbell, CA	First Element Fuel
Citrus Heights, CA	Shell
Costa Mesa, CA	First Element Fuel
Del Mar, CA	First Element Fuel
Diamond Bar, CA	Air Products
Emeryville, CA	Messer
Fairfax – LA, CA	Air Products
Fountain Valley, CA	First Element Fuel
Fremont, CA	First Element Fuel
Harris Ranch, CA	First Element Fuel
Hayward, CA	First Element Fuel
Hollywood, CA	First Element Fuel
La Canada Flintridge, CA	First Element Fuel

Location	Operator
Lake Forest, CA	First Element Fuel
Lake Tahoe – Truckee, CA	First Element Fuel
Lawndale, CA	Air Products
LAX	Air Liquide
Long Beach, CA	First Element Fuel
Mill Valley	First Element Fuel
Mission Hills, CA	First Element Fuel
Mountain View, CA	Iwatani
Oakland, CA	First Element Fuel
Palo Alto, CA	Air Liquide
Playa Del Rey, CA	First Element Fuel
Sacramento, CA	Shell
San Francisco – Harrison St.	Shell
San Francisco – Mission St.	Shell

Location	Operator
San Francisco – Third St.	Shell
San Jose, CA	First Element Fuel
San Juan Capistrano, CA	Iwatani
San Ramon, CA	Iwatani
Santa Barbara, CA	First Element Fuel
Santa Monica, CA	Air Products
Saratoga, CA	First Element Fuel
South Pasadena, CA	First Element Fuel
South San Francisco, CA	First Element Fuel
Thousand Oaks, CA	First Element Fuel
Torrance, CA	Shell
UC Irvine, CA	Air Products
West Sacramento, CA	Iwatani
Woodland Hills, CA	Air Products

 \rightarrow Stations using MC Formula

27 out of a total 42 retail public stations (~65%) in California use the MC Formula protocol

Background

- > Overview of the MC Formula Protocol
- MC Formula Validation Calculator
- MC Formula Protocol Validation (CSA HGV 4.3)
- Usage of MC Formula Protocol in the United States
- Conclusion

MC Formula: Conclusion

General:

- > MC Formula and Table-based protocols are **both standard protocols within SAE J2601**
- MC Formula offers significantly better fueling performance than table-based due primarily to its direct use of the fuel delivery temperature
- > MC Formula also **allows the station more flexibility** (no fallback or step changes between "T" categories)

Overview of MC Formula:

- > Almost all requirements are the same for table-based and MC Formula;
- > Both MC Formula and table-based are **based on the same set of assumptions and boundary conditions**
- Both MC Formula and table-based can be used with and without communications, and have a cold dispenser option
 MC Formula Validation Calculator:
- > A freely available software tool that is very useful for dispenser programming and station validation

MC Formula Protocol Validation:

- > The CSA HGV 4.3 standard provides validation requirements for both table-based and MC Formula protocols
- CSA HGV 4.3 is under revision to align with the 2020 SAE J2601 and to provide a more rigorous FAT option
- MC Formula validation consists of fault testing, communications testing, protocol function testing and fueling evaluation
 MC Formula Usage in the United States:
- > Almost 65% of public retail stations in California utilize MC Formula
- > At least four dispenser manufacturers offer dispensers capable of using the MC Formula protocol

Acknowledgement:

The development of the MC Formula fueling protocol was supported by Honda R&D Americas LLC.

A special thanks to the U.S. Department of Energy's Hydrogen and Fuel Cell Technologies Office, within the Office of Energy Efficiency and Renewable Energy for supporting my participation this workshop and ongoing support for my work in standards development organizations.

I would also like to acknowledge Wenger Engineering for supporting the R&D of the MC Formula protocol via computer based fueling simulations and for their programming of the MC Formula Validation Calculator.

And finally, I would like to acknowledge the members of the SAE Fuel Cell Standards Committee Interface Task Force, which I have had the privilege to chair, for volunteering their time and expertise towards the development of the SAE J2601 standard.

Contact:

You can reach me at: steven.mathison@nrel.gov

Notice:

This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by U.S. Department of Energy Office of Energy Efficiency and Hydrogen and Fuel Cells Technology Office. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.