

### HyConnect - Wireless Communication Between H2 Vehicles and Dispensers

Ulrich Muecke | Product Development Fellow contact for questions: Benoit.Poulet@shell.com | OEM interface manager Jul 22-23, 2021, CEP Workshop

Copyright Shell International Exploration & Production, Inc.

### **Anti-Trust Reminder**

- Meeting participants are reminded that the parties are competitors in certain markets, and are subject to antitrust/competition laws
- The parties are committed to compliance with all applicable laws and regulations, including antitrust/competition laws
- Any discussions are for the purpose of the development of a system to wirelessly exchange safety-critical fueling data between hydrogen vehicles and dispensers and are subject to legal advice to ensure compliance with antitrust/competition laws
- Discussions which might be misconstrued as price fixing, customer or market allocation, attempts to alter the competitive marketplace, or boycott suppliers and customers are not allowed
- Discussions of competitively sensitive subjects such as an individual company's marketing strategies, supply and demand forecasts, open season bids, vendor specifics, business strategy, and customer information are not allowed
- If any meeting participant has any questions/concerns regarding these antitrust considerations with respect to the meeting, he/she will consult his/her counsel
- All meeting participants are encouraged to promptly object to any material, presentation, comment, or question that they
  do not believe is legally appropriate for the meeting



- Introduction to Shell TechWorks
- Hydrogen Fueling Today
- Problem Statement
- Solution Space
- Functional Safety in Communication
- Industry Activities

### Introduction to Shell TechWorks



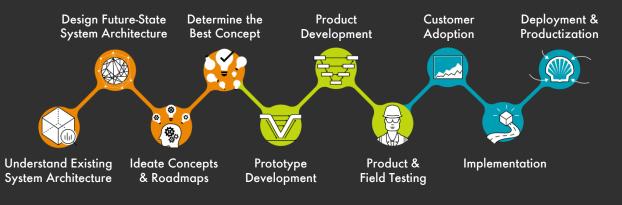
# **TECHWORKS**

#### Shell's Boston-Based Innovation Center

#### ABOUT US

Shell's Projects & Technology group created TechWorks with a goal of establishing an innovation team with backgrounds outside of the energy industry to advance Shell's short-term product development capabilities.

We work with teams across all lines of Shell's business to identify high-value opportunities and provide solutions that deliver real, tangible value to the organization.


#### WHAT WE DO



#### SYSTEMS ENGINEERING

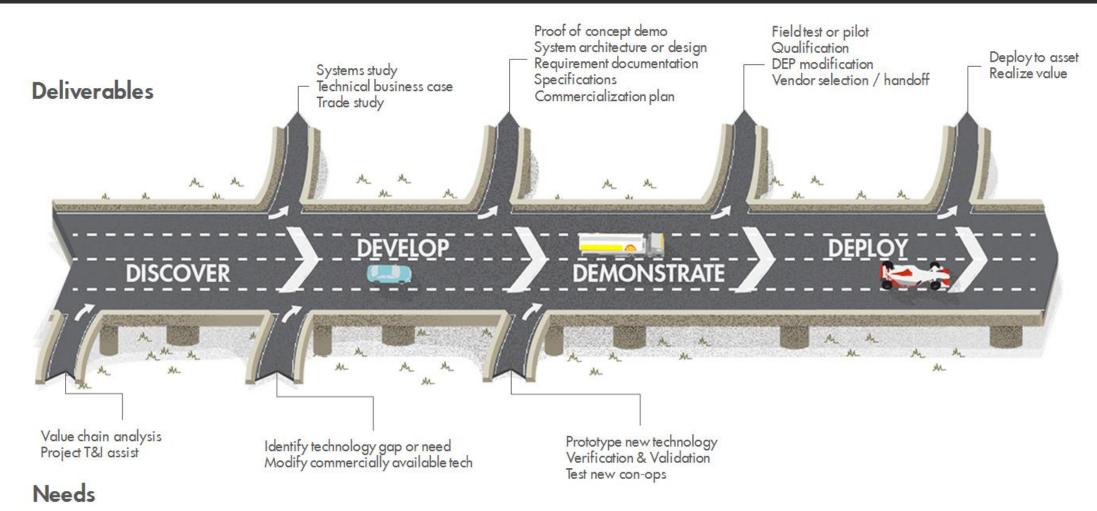
Understanding complex systems and data trends in order to identify and quantify high-value of opportunities.







#### PRODUCT DEVELOPMENT


The development, testing, and verification processes that turn ideas into prototypes and functional products.



### DEPLOYMENT & PRODUCTIZATION

Scaling solutions and guiding adoption into Shell's business through collaboration with internal and external partners.

# Working with TechWorks



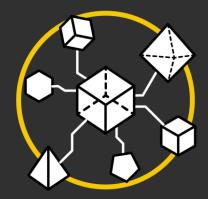
### **Project Background**



### Colocation & Collaboration

Shell Hydrogen in the US was born out of a systems study at Shell TechWorks




#### Heavy-duty Fueling Times

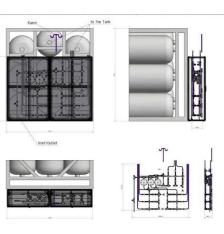
Long fueling times for heavy duty vehicles were identified as challenge to Shells hydrogen strategy



#### Vehicle to Dispenser Data

Bottleneck is communication of safety critical fueling data from vehicle to dispenser to be able to use an advanced fueling protocol




#### In-House Product Development

Shell TechWorks has competence in the area of electronics, communications and networking

### Shell's H2 Activities (some of them)



Shell Hydrogen Power Dispenser



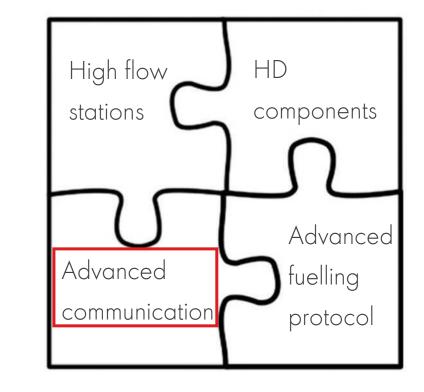
**High-Capacity Storage** 



**Mobile Refueler** 

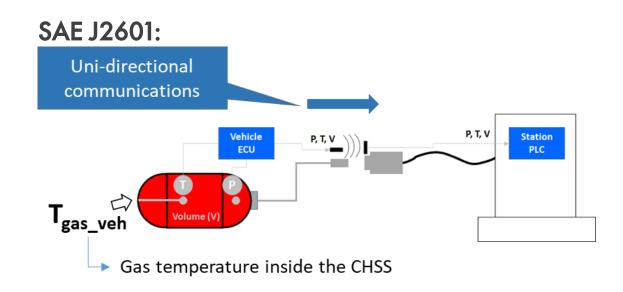


**High-Capacity Transporter** 


# Hydrogen for Heavy Duty: path to success

- The key to success in heavy-duty sector is parity with Diesel in:
  - Total Cost of Ownership
  - Range and Refueling speed

80 kg of hydrogen filled in 10 min


RECEPTACLE

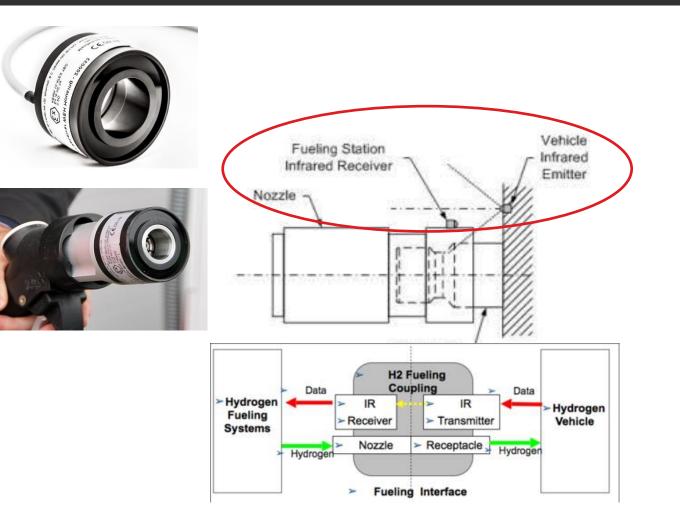
- This refueling performance is only achievable with these 4 elements
  - HD components => Hydrogen Heavy Duty Industry Group Consortium
- High-flow stations
- Advanced fueling protocol =>
- Advanced communication => HyConnect



### Status of Hydrogen Fueling Today

# Fueling Protocol SAE J2601 (State-of-the-art)

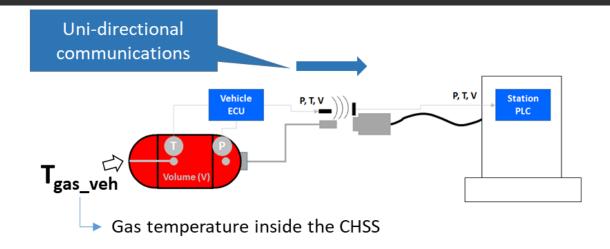



Graphics from Steve Mathison, NREL

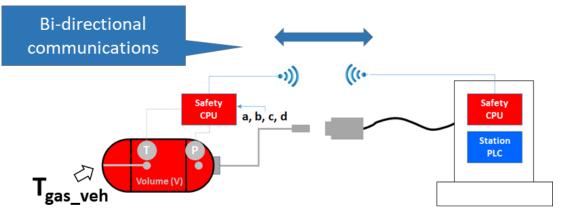
- Tank of H2 vehicle heats up during fueling, mandates control of fill rate and pre-cooling of H2
- Design philosophy for J2601
  - Station assumes full responsibility
  - No exchange of safety critical fueling data
- Originally developed for passenger vehicles
- Dispenser measures initial tank pressure, tank volume, ambient temperature and fuel delivery temperature to calculate fill rate and final pressure
- Large safety margins, barely sufficient for passenger vehicles (fueling times 3-5 min)

Heavy duty:

- Fueling times >30 min if using J2601 (tank size 80 kg H2)
- Goal is <10 min, depending on tank size


### Infrared Communication Vehicle/Dispenser




SAE J2799 specifies IR interface and data protocol

- Uni-directional communication only -> intrinsically not possible to communicate safetycritical data
- Communication activity
  - Start after nozzle inserted and start up routine has started
  - Continuously during fueling; transmit: p, T, fueling command
  - Use as long as dispenser receives data
  - Comms lost during fueling: abort or continue w/noncomms
- Communication only to improve state of charge (SOC)
  - BUT limited by calculated target pressure

### Future: EU Project PRHYDE



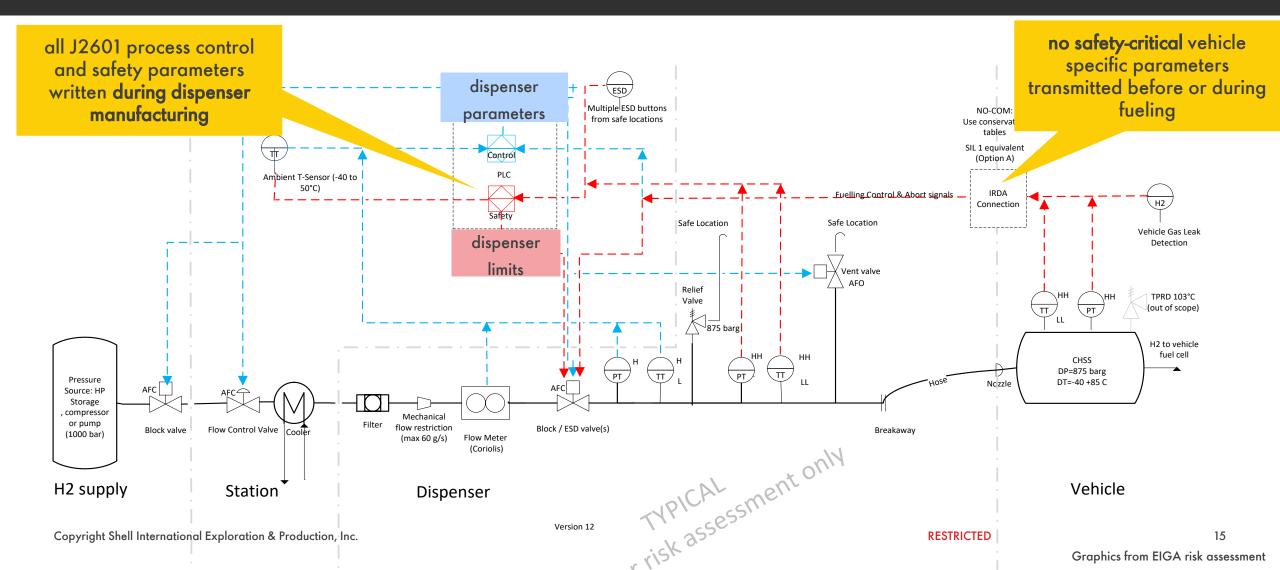
#### Future:



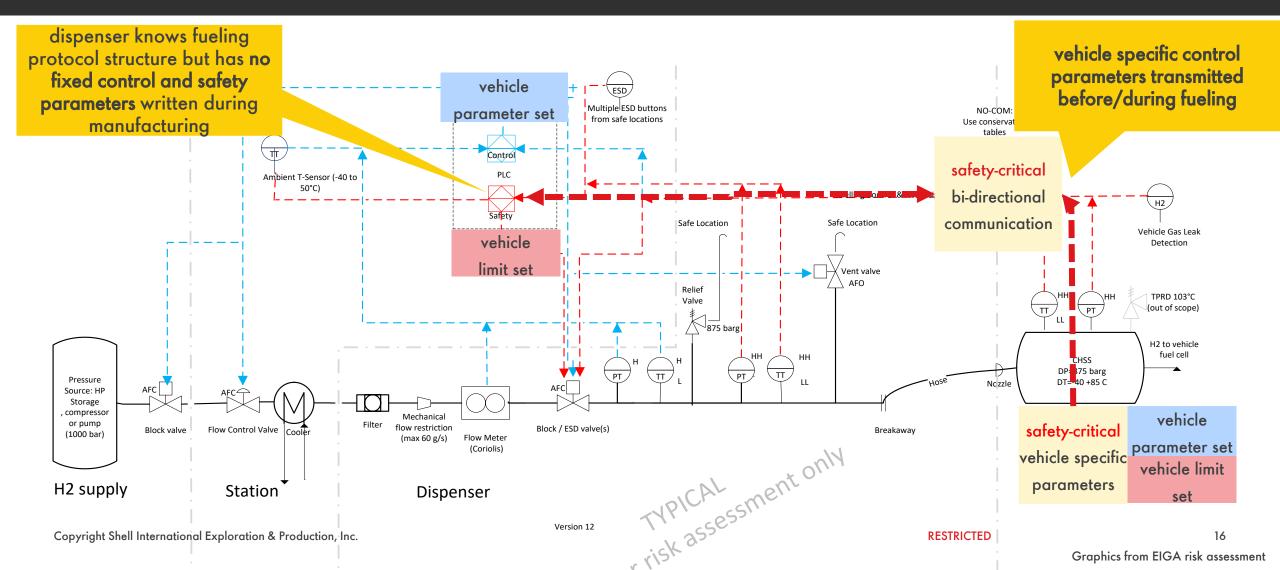
- Different solutions are possible
  - Type 1 Reduce safety margins (keep existing comms)
  - Type 2 Communicate extended parameter set that characterizes tank(s)
  - Type 3 Feedback control fueling (p, T transmitted continuously)
- The latter two assume availability of communication channel for safety-critical information
- Standardization of Prhyde fueling protocols is planned in ISO 19885-3

Copyright Shell International Exploration & Production, Inc.

Graphics from Steve Mathison, NREL


### Future: Expanded Vehicle Fleet






Graphics from Steve Mathison, NREL

### Safety today (J2601) – dispenser/station



### Safety in the future – dispenser/station



### **Problem Statement**

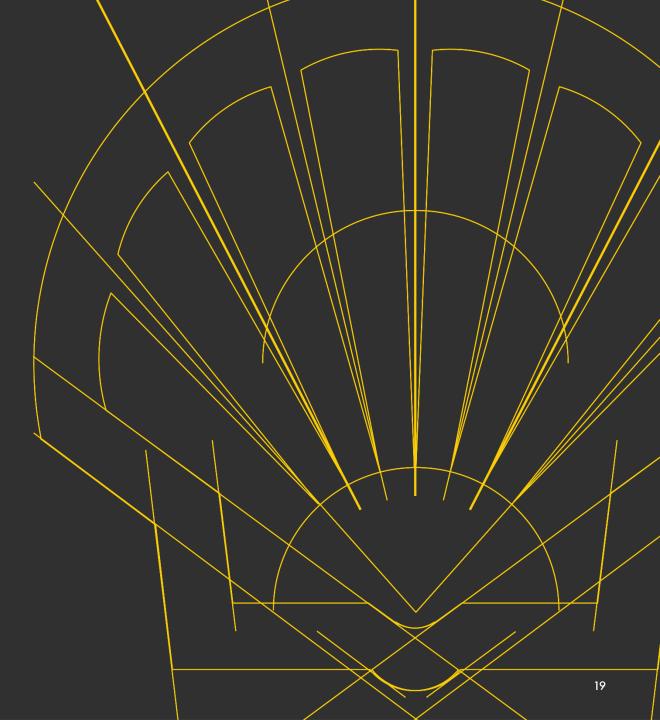
#### J2601/J2799:

- Large safety margins result in low fill rates and excessive pre-cooling/poor energy efficiency
- Uni-directional communication, does not allow transmission of safety-critical data
- IrDA unreliable, prone to error (sunlight, fogging)
- Easily damaged in field w/costly maintenance
- Vehicles with different tank configurations

#### Need:

- Reliable wireless communication of safety-critical fueling data between vehicle and dispenser
- Low-cost components
- Open standard(s), industry wide solution

#### **Enables:**


- Advanced fueling protocols to decrease fueling times
- Improved energy management (precooling)

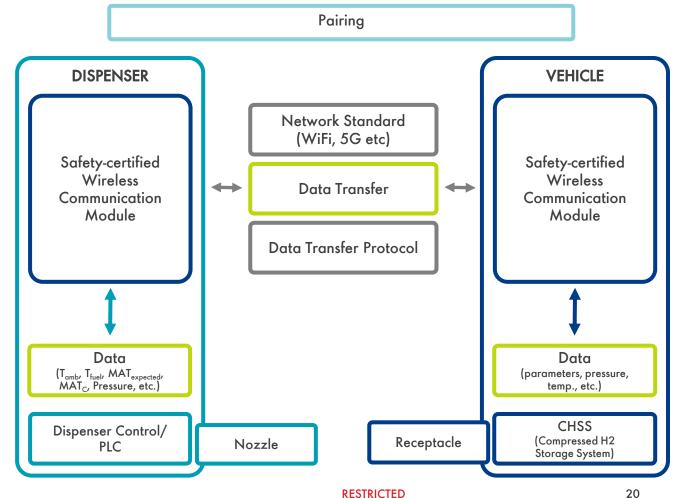
### **Assumptions/Disclaimer**

- PRHYDE project has proposed framework for fueling protocols, some open questions remaining on
  - Data to be transmitted
  - Vehicle/dispenser responsibility
  - Some others...
- Assumption for the following: Wireless communication of safety-critical data between vehicle and dispenser needed
  - Can be used to transmit static data (tank properties etc.) and dynamic data (temperature, pressure etc.)
  - Automatically bi-directional
- Detailed implementation TBD
  - Proposed implementations/examples in the following are to be viewed as a starting point and not "the" solution

### **Solution Space**

Copyright Shell International Exploration & Production, Inc.




# **Proposed Approach**

#### **Key Features**

- Bi-directional wireless communication modules in dispenser and vehicle
- Based on black channel communication IEC 61508
  - example: IEC 61784-3 defines safety protocol based on black channel comms
  - Vehicle/dispenser need safety-certified modules
  - Low cost, non-safety-certified network hardware beyond safety-certified modules

#### Needs

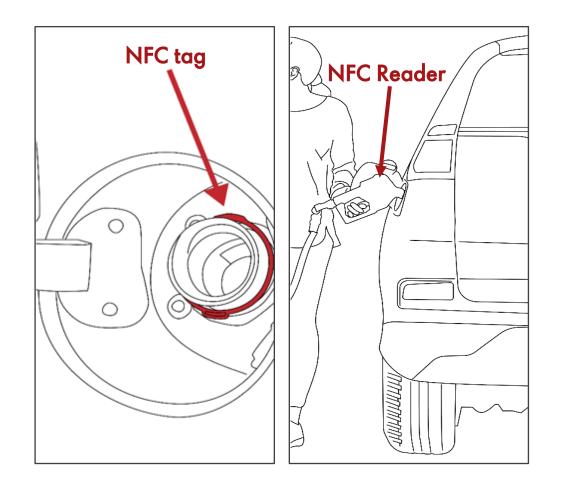
- Vehicle to dispenser pairing
- Trusted relationship between vehicle and dispenser



### Sequence of events

#### fueling

- pairing
  - read vehicle identifying information (e. g. via NFC)
  - establish network connection between vehicle and dispenser (e. g. via Wi-Fi)
- authenticate vehicle and dispenser
- encrypt communication channel
- exchange fueling data (black channel)
  - static data before H2 flow starts
  - dynamic data (continuously) while H2 is flowing


#### production

- write safety-critical data to vehicle: static fueling data (look-up tables, parameters), certificate(s) for identity
- write safety-critical data to dispenser: certificate(s) for identity

first time fueling protocol data gets transmitted (i. e. Prhyde)

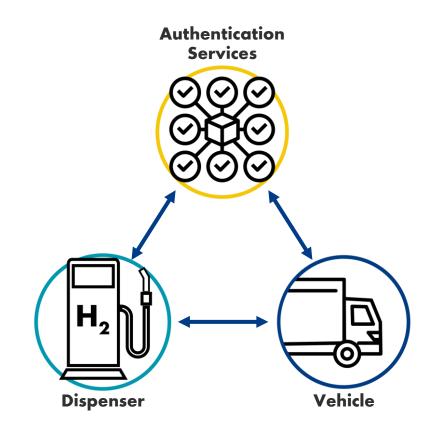
### **Vehicle to Dispenser Pairing**

- Vehicle enters station forecourt and stops in front of dispenser, how to establish 1:1 network connection (pairing)?
- One possible solution is based on NFC to establish pairing
- Example:
  - NFC tag on vehicle fuel receptacle
  - NFC reader on fuel nozzle
  - Once the two come into sufficient proximity the NFC reader reads vehicle identifying information from the NFC tag
  - The dispenser uses the vehicle identifying information to establish a network connection with the vehicle
- Alternatives: bi-directional NFC communication vehicle/dispenser, use RFID instead of NFC, etc.



# **Establishing Trust**

#### Who are you?


- How does dispenser know the vehicle is what it advertises itself to be and vice versa?
- Potential HSSE incident if vehicle reports as something it's not

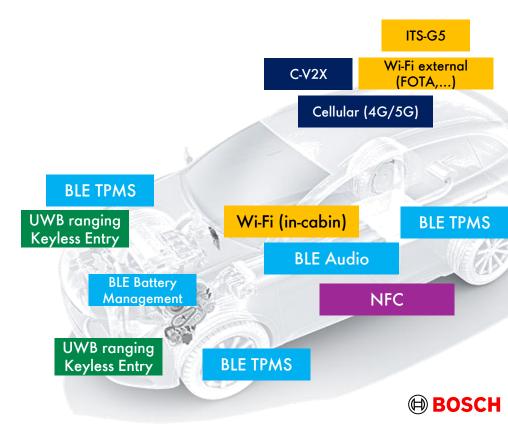
#### Identity Management/Authentication

- Use industry standard identity and access management (IAM) paradigm
- After vehicle and dispenser have paired, identity certificates are exchanged
- Certificates are validated by a trusted party

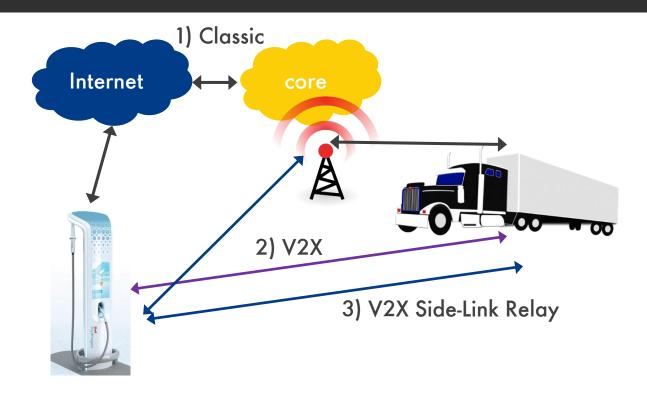
#### Encryption

• To securely communicate across insecure channels




# Existing vehicle wireless communication

#### Bluetooth


- Hands-free music streaming, rear-seat entertainment
- Tire pressure monitoring (TPMS) and Battery Management
- Secure communication for keyless entry

#### Wi-Fi

- Infotainment for in-cabin, auxiliary devices (e.g. cameras)
- Firmware over the air (FOTA) and EV wireless charging control
- Automated valet parking (functionally safe)
- ITS-G5: Hazard warnings (secure communication)
   UWB (ultra wide band): Secure ranging for keyless entry
   NFC: Secure communication for Vehicle access
   Cellular
- eCall, infotainment, network-based services
- C-V2X : Tele-operated driving (functionally safe)



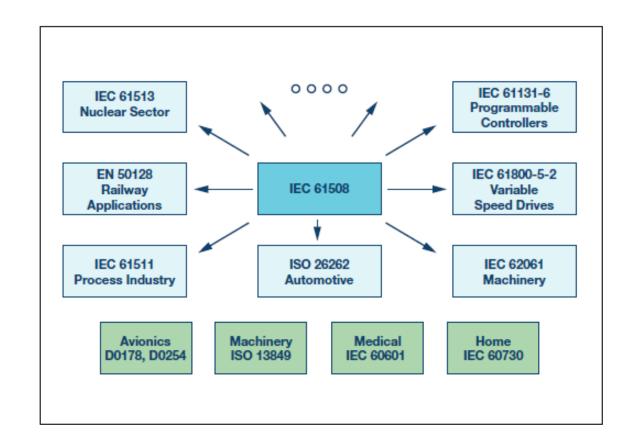
### Cellular: 4G and 5G (and beyond)



- 3GPP Release 15: rolled-out, available
- Rel. 16 first modules available
- Rel. 17: specified until 6/2022, modules by end of 2022

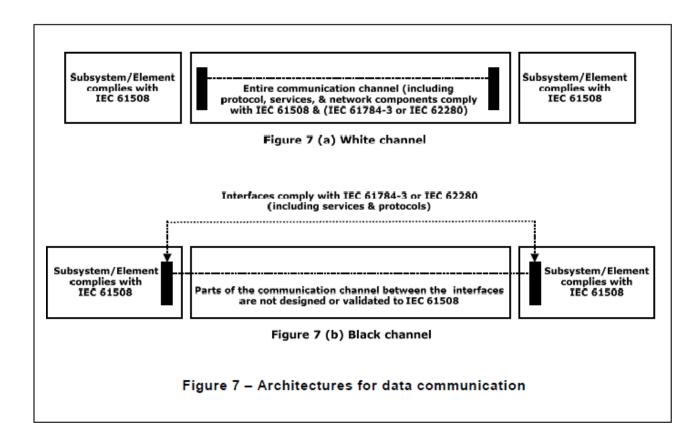
- 1) Classic 1G...5G system (via cellular network)
  - Ultra-reliable low-latency communication: latency approx. 5 ms (Rel. 17)
  - device-to-device not supported yet (Rel. 17+)
- 2) V2X allows direct communication without cell tower (resource allocation mode 4) and low-latency communication (Rel. 14: 4G-V2X)
- 3) V2X Side-Link: One side as relay to cell tower (Rel. 17)

### Once secure communication is established...


- Fueling data can be exchanged
- Additional services can be offered to the customer
  - Automatic use of loyalty programs (fuel rewards, fleet cards etc.), product offerings etc.
  - Fleet management (status/maintenance/fueling/payment data, remote access to vehicle data, etc.)
- Fully automated payment can be executed
  - The customer (pre)registers payment information
  - Payment information is obtained by the dispenser via the secure communication link, resulting in a truly frictionless transaction (i.
     e. user does not have to enter any payment information)
  - Multi-factor authentication can be used where the car itself can be used as one factor (knowledge = something only the user knows, possession = something only the user has and inherence = something only the user is)
- Logging of fueling data/operation, vehicle/tank properties can be performed for future analysis/optimization/safety improvement etc.
- ...many more...

# Functional Safety in Communication




### Functional Safety (and Security) in Communication

- Security = prevent harm due to intentional actions (i. e. hacking)
- Safety = prevent harm due to unintentional actions (i. e. random packet loss)
- There is no safety without security
- Dispenser Side
  - Functional safety IEC 61508
  - Safety-critical communication IEC 61784-3 (fieldbus systems)
  - System security IEC 62443
- Vehicle Side:
  - Safety ISO 26262 (adaption of 61508 for automotive)
  - Security ISO 21434 (draft), SAE J3061 (non-binding), ISO 15504 (SPICE), ISO 2700x (general)

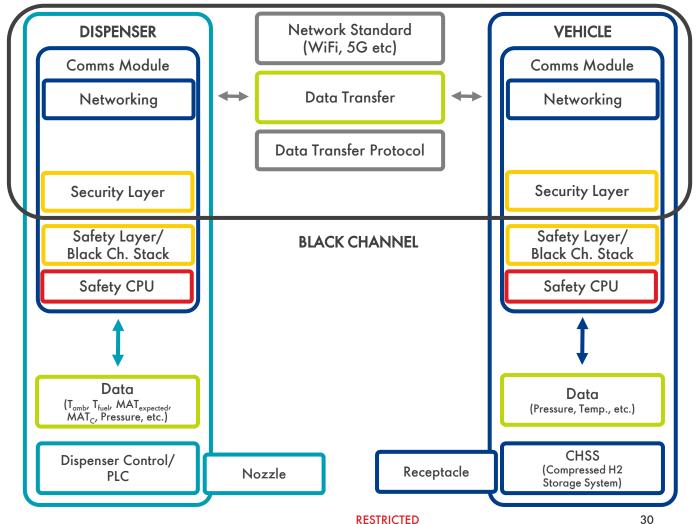


### **Black Channel vs. White Channel Communication**

- White channel
  - entire communication chain of all elements is safety certified
- Black channel
  - only the two end elements of a communication channel are safety certified
  - all other components are standard (non-safety certified)
  - well known and established method in communications design

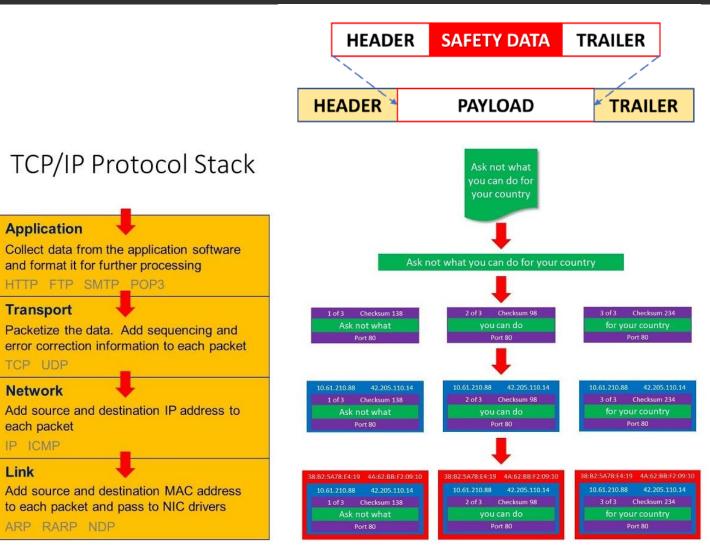


Graphics from IEC 61508


### **Black Channel Implementation - Hardware and Software**

#### Hardware

- requires safety CPU
- requires safety I/O to interface with PLC, sensors, bus systems


#### Software

- black channel stack running on safety CPU
- Networking
  - hardware can be standard, non-safety certified



### Black channel – packets and encapsulation

- network communication: all data is transferred in packets
- data goes through different layers (OSI model, TCP/IP model etc.)
- safety-critical data is encapsulated into a safety packet by the black channel stack (safetycertified software running on safety CPU)
- safety packet is then handed over to standard, non-safety-critical software for packetization
- non-safety-certified hardware/software is unaware that safety-critical data is transmitted



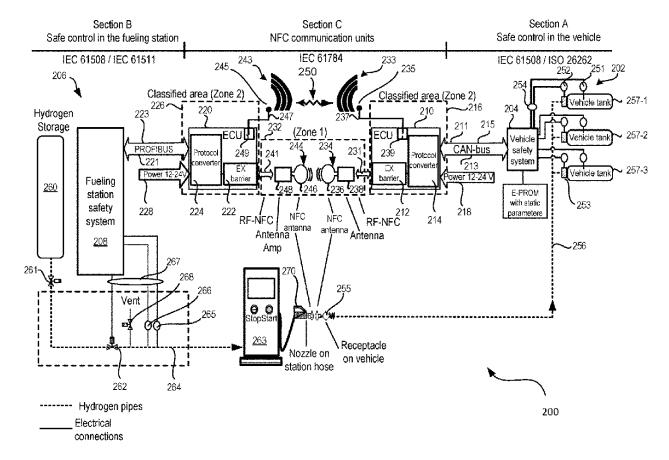
Copyright Shell International Exploration & Production, Inc.

### **Black Channel Communication Safety Measures**

- Must protect from various network errors
- IEC 61784-3 table1 provides a visual summary of communication error vs. safety measures
  - Corruption
  - Unintended repetition
  - Incorrect sequence
  - Loss
  - Unacceptable delay
  - Insertion
  - Masquerade
  - Addressing

| Communication<br>errors  | Safety measures |            |                  |                              |                  |                             |                                   |                                          |
|--------------------------|-----------------|------------|------------------|------------------------------|------------------|-----------------------------|-----------------------------------|------------------------------------------|
|                          | Sequence number | Time stamp | Time expectation | Connection<br>authentication | Feedback message | Data integrity<br>assurance | Redundancy with<br>cross checking | Different data<br>integrity<br>assurance |
| Corruption               |                 |            |                  |                              |                  |                             | Only for                          |                                          |
| (see 5.3.2)              |                 |            |                  |                              | x                | x                           | serial<br>bus <sup>d</sup>        |                                          |
| Unintended<br>repetition |                 |            |                  |                              |                  |                             |                                   |                                          |
| (see 5.3.3)              | x               | x          |                  |                              |                  |                             | x                                 |                                          |
| Incorrect sequence       |                 |            |                  |                              |                  |                             |                                   |                                          |
| (see 5.3.4)              | x               | x          |                  |                              |                  |                             | x                                 |                                          |
| Loss                     |                 |            |                  |                              |                  |                             |                                   |                                          |
| (see 5.3.5)              | ×               |            |                  |                              | ×                |                             | x                                 |                                          |
| Unacceptable delay       |                 |            |                  |                              |                  |                             |                                   |                                          |
| (see 5.3.6)              |                 | ×          | X c              |                              |                  |                             |                                   |                                          |
| Insertion                |                 |            |                  |                              |                  |                             |                                   |                                          |
| (see 5.3.7)              | ×               |            |                  | x <sup>a,b</sup>             | x a              |                             | x                                 |                                          |
| Masquerade               |                 |            |                  |                              |                  |                             |                                   |                                          |
| (see 5.3.8)              |                 |            |                  | x a                          | х а              |                             |                                   | ×                                        |
| Addressing               |                 |            |                  |                              |                  |                             |                                   |                                          |
| (see 5.3.9)              |                 |            |                  | x                            |                  |                             |                                   |                                          |

Table 1 – Overview of the effectiveness of the various measures on the possible errors


### Industry Activities

Copyright Shell International Exploration & Production, Inc.



### Patents

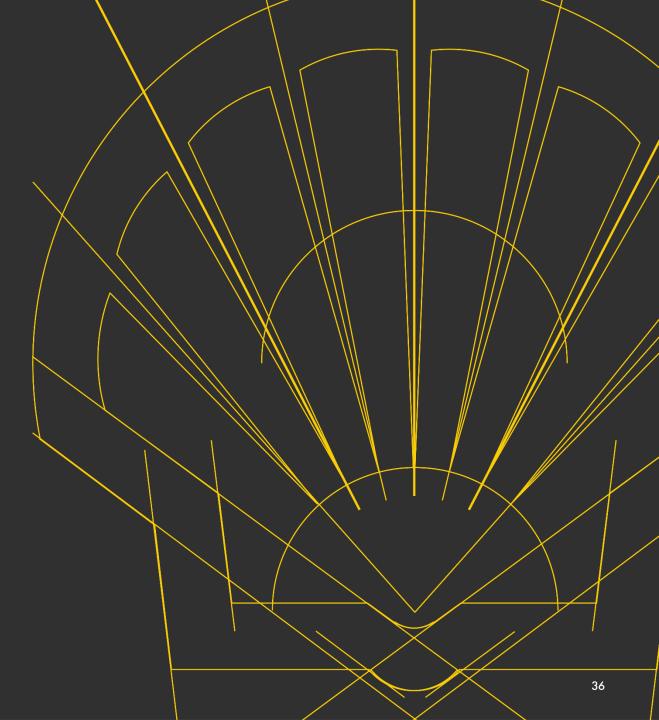
- US Patent: 10,800,281 "Communications Systems and Methods for Hydrogen Fueling and Electric Charging" (Priority Date: Feb. 18, 2019)
- Inventors: Nikola, NEL, Hoerbiger
- Concept: NFC + V2X bi-directional communications between vehicle and fueling station
- Nikola will offer the patent royalty-free to the HyConnect consortium and ISO/TC 197 to further develop and standardize the technology
- Nikola will participate in the preparation of technical papers for the dissemination to the public domain of any improvements in the technology to ensure standardization is not inhibited.



RESTRICTED

### **Standardization activities**

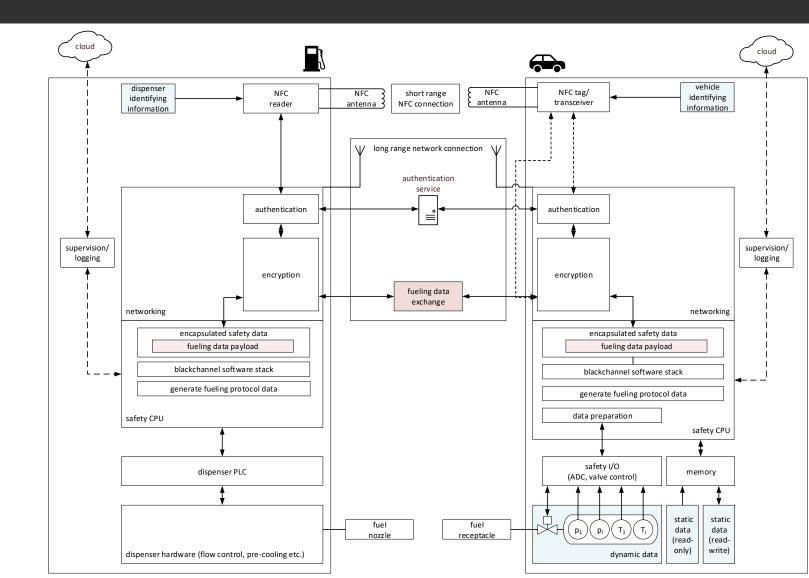
- ISO has started activities to standardize fueling protocol(s) and vehicle/dispenser communication
  - TC 197/WG24
  - ISO 19885-1 fueling protocols in general
  - ISO 19885-2 wireless communication
    - ambitious timeline
    - next meeting ISO 19885-2 August 9/10, 2021
  - ISO 19885-3 heavy duty fueling protocols (Prhyde)


Copyright Shell International Exploration & Production, Inc.

### SCOPE OPTIONS

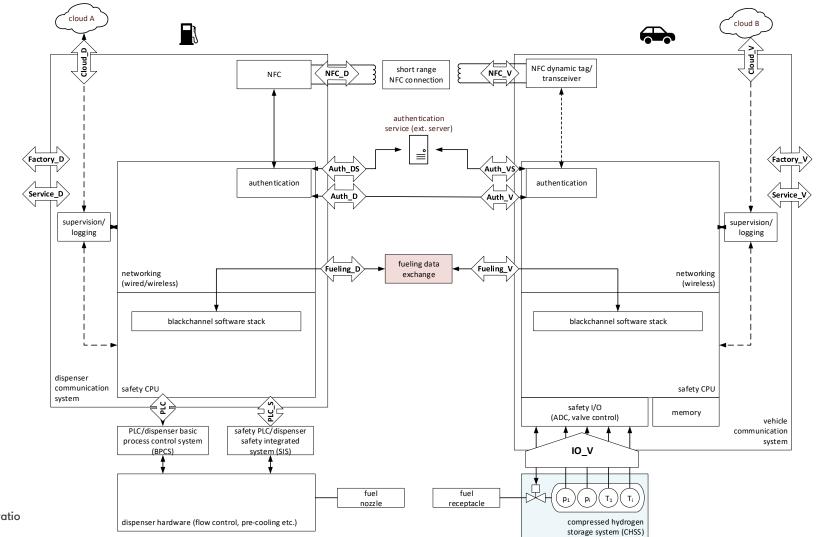
- IRdA: Do we want to harmonize with SAE J2799?
  - $\rightarrow$  Standard or technical specification?
- Advanced communications
  - Methodology: Do we have enough to define?
  - Data transmitted: Relies on work on 19885-3, other groups
  - → Technical specification or report?




### System and Interfaces



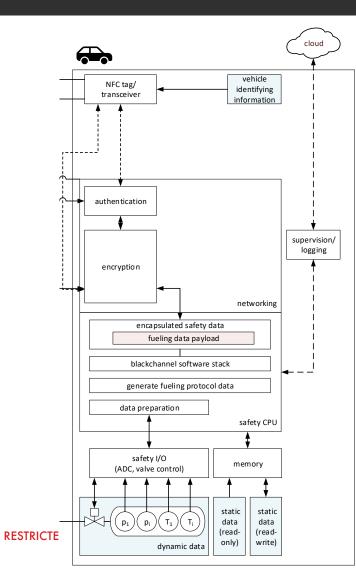
Copyright Shell International Exploration & Production, Inc.


#### System Overview – More Details

- different for each vehicle/dispenser
- depends on vehicle EE-architecture and dispenser PLC configuration
- configuration will also depend on chosen Prhyde fueling protocol method (especially sensors)

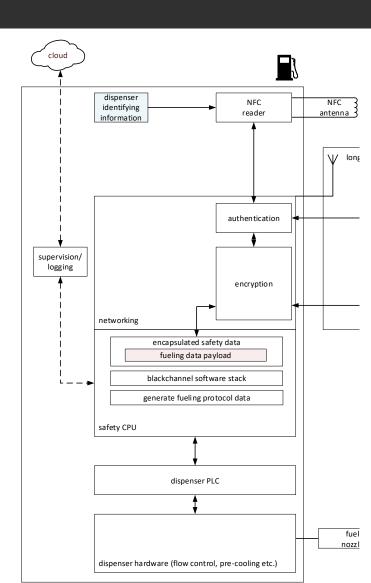


Copyright Shell International Exploration & Production, Inc.


#### Interfaces Diagram



Copyright Shell International Exploratio


# **Vehicle Side Implementation**

- multiple possible configurations:
  - CHSS ECU + comms ECU (new) + wireless unit (existing/new)
  - CHSS ECU (modified) + comms/wireless unit (new)
  - CHSS ECU + existing hardware on vehicle
- likely each vehicle OEM will implement differently based on EE-architecture
  - buy hardware/software and integrate
  - use existing hardware, buy software
  - use existing hardware, write own software



# **Dispenser Side Implementation**

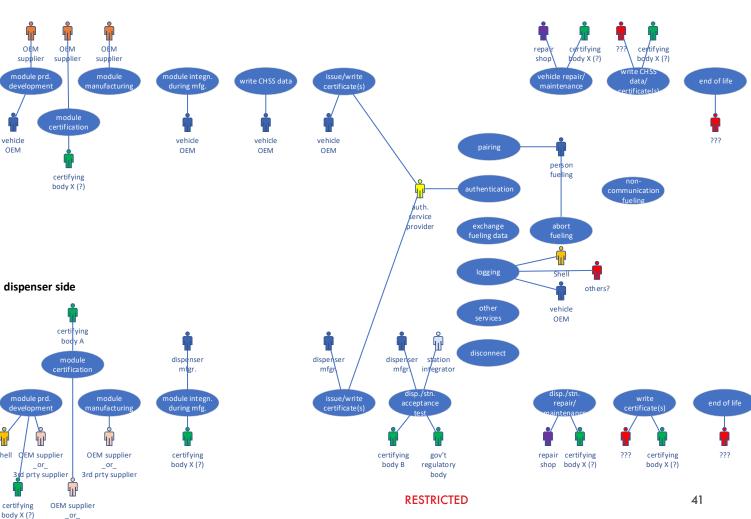
- fewer possible configurations:
  - comms unit + dispenser PLC with safe communication bus, e. g. ProfiSAFE
  - dispenser PLC and safetyCPU in once device (eliminates safe bus connection)



#### Use Case Diagram

supplier during mfg for the moment: taking into consideration product development activities as well vehicle vehicle OEM OEM certifying some interactions still TBD body X (?) main difference vehicle/dispenser: dispenser/station must pass acceptance

vehicle side


OEM

Shell

certifving

body X (?)

3rd prty supplier



Copyright Shell International Exploration & Production, Inc.

test after construction finished

# **Project HyConnect**

### **Project HyConnect – Overview**

- Collaboration between Shell, Bosch and HS Aalen (university of applied science)
- Funded by Shell and Bosch
- Work packages on
  - Requirements engineering
  - Concept development incl. safety analysis
  - Pre-normative activities for communication interface
  - in the past: Proof-of-Concept based on Bosch hardware/software -> postponed until more clarity from standardization
- Make part of project results available broadly to drive industry adoption







# HyConnect –Timeline

|     |                                  | Project Month |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    | -  |    |    |    |    |    |    |    |    |    |    |    |
|-----|----------------------------------|---------------|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| WP  | Titel                            | 1             | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
| 0   | Project Management               |               |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 1   | Dissemination & Liaison          |               |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 2   | Standardization                  |               |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 2.1 | Preparation                      |               |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 2.2 | Technical & committee activities |               |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 3   | Requirements Engineering         |               |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 3.1 | Systems Analysis and Design      |               |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 3.2 | Pairing and Communication Req's  |               |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 3.3 | Vehicle/CHSS/dispenser Req's     |               |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 3.4 | Safety and IT security Req's     |               |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 3.5 | Req's Quantification             |               |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 3.6 | Proof-of-concept Req's           |               |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 4   | Concept Development              |               |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 4.1 | Wireless Technology              |               |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 4.2 | IT Security                      |               |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 4.3 | Functional Safety                |               |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 4.4 | Data Protocol                    |               |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 4.5 | Pairing                          |               |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 4.6 | System Concept                   |               |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |

#### **Project HyConnect – "Associated Partners"**

- Letter of Interest/Support from:
  - Toyota, MAN, Nikola, Daimler, BMW, Jaguar Land Rover, Air Liquide, FillnDrive, Walther Precision, NREL
- Members expected to participate in
  - Collection of current status
  - Requirements identification
  - Use case discussions
- Possibility to participate in
  - Workshops



## NFC pairing - notes

- the vehicle and dispenser processors/ECUs each can have a trusted execution environment to run secure applications and communication protocols requiring encryption and secure storage of sensitive data
- the NFC tag can be a active or passive tag, can integrate a secure element, can be a secure tag
- the NFC tag can adhere to Global Platform standard(s)
- the NFC tag can be on the dispenser side or on the vehicle side/NFC reader vice versa
- the NFC reader electronics and antenna can be integrated in the nozzle or the antenna can be integrated in the nozzle and the reader electronics in the dispenser

### Establishing trust - notes

- identity management: provisioning (create certificates), authentication (validate user identity), authorization (determine rights to access system), self service (updating information, passwords, repair), password/certificate management (defining passwords if needed, defining other methods of access identification), governance (define guidelines/rules), deprovisioning (revoking certificates/identities/permissions)
- public key encryption can be used, utilizing a public key infrastructure (PKI)
- rolling keys/temporary keys can potentially be used and/or stored on the NFC tag
- the NFC tag can store globally unique ID(s), certificate(s), cryptographic key(s) (public key(s)) i. e. a vehicle public key, static or rolling key(s), encrypted data, vehicle identifying information (MAC address, VIN number etc.)
- the data on the tag can be read-only or read/write

#### Once a connection is established – notes 1

There are a large number of possible applications/actions once a communication is established between a vehicle and a dispenser:

- 1. Fully automated payment can be executed
  - a. The customer (pre)registers payment information
  - b. Payment information is obtained by the dispenser via the secure communication link, resulting in a truly frictionless transaction (i. e. user does not have to enter any payment information)
- c. different possibilities exist:
  - payment information can be stored in the vehicle processor and communicated to the dispenser or payment information can be stored in the cloud/on a remote server and accessed by using vehicle/customer identifying data obtained through the data link
  - ii. payment services similar to Apple pay or Google pay can be imagined with the car acting as "the cell phone"
- 2. Different authentication methods are possible
- a. Multi-factor authentication can be used where the car itself can be used as one factor (knowledge = something only the user knows, possession = something only the user has and inherence = something only the user is)
- b. if the customer registers additional devices and agrees to them being used for transactions, these can be used as a backup for authentication (i. e. pressing OK on a cell phone/tablet/vehicle display etc.)

3. White listing is possible for automated payment or other services, i. e. the vehicle can be pre-registered to receive certain services, i. e. paying for fuel, receiving a car wash etc. at certain locations (fueling stations/dispensers etc.); receiving these services might not need internet connectivity (whereas otherwise it might)

- 4. A large range of fleet solutions is possible
- a. Data logging (fuel consumption, payment, fuel delivery, cost splitting, fueling data, fueling operational data, vehicle/tank properties etc.) can be performed for future analysis/optimization/safety improvement etc. (not only for fleets but also to improve the station operations)
- b. Status information can be submitted for repair/maintenance, i. e. for oil/fluids change etc.
- c. if the communications interface has access to other vehicle data these can be accessed and processed
- d. real time data can be sent to fleet operator
- e. electronic driving logs can be managed/transmitted etc.

### Once a connection is established – notes 2

- 1. A data storage can be added to the vehicle that can be used to store any data; a data wallet can be placed on board of the vehicle
  - a. private data/fleet data
  - b. fueling data
  - c. government data such as TUV certificates, inspection data
  - d. store maintenance records
  - e. data can be stored for commissioning of vehicles
- 2. Additional services can be offered
- a. convenience, i. e. pre-prepare coffee, reserve a shower for driver etc.
- b. for ride sharing: rider refuels and gets bonus points, general management etc.
- c. offers can be sent to other mobile devices/email addresses etc.
- On demand transport services can be implemented, i. e. taking packages from service station A to service station B if the route is known
   Displays can be used to show additional information, i. e. using the display inside a vehicle, on the dispenser, on the nozzle, on a cell phone/tablet/other mobile device
- a. local info
- b. info from fleet base
- c. personalized into based on vehicle information
- d. display fueling time/duration to driver
- e. display ads/offers
- 5. Customer loyalty programs can be applied automatically, i. e. bonus points/money, digital fleet cards, special conditions, etc.
- 6. An alert can be given on any additional mobile device such as a cell phone when the fueling is done